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Resumen

Los ĺımites Carrollianos de teoŕıas de campos Lorentzianas se han encontrado
recientemente estudiadas, en los últimos años, como resultado de un renovado
interés en teoŕıas y geometŕıa Carrolliana desde el lado de f́ısica teórica. De ah́ı nace
la decisión de estudiar los ĺımites Carrollianos de la teoŕıa de Maxwell Modificado
(ModMax, por su escritura en inglés), que es la única extensión no-linear de la
teoŕıa de Maxwuell con invarianza conforme y de dualidad en el vaćıo. El presente
trabajo contiene tanto una derivación de ambos ĺımites a nivel de las ecuaciones de
movimiento como una construcción de una formulación Hamiltoniana para cada
uno. Se encontró que el ĺımite magnético tiene una contribución no-linear no-nula a
las ecuaciones de movimiento controlada por el parámetro de ModMax γ y que esta
admite una biyección con el ĺımite Carrolliano magnético de la teoŕıa de Maxwell.
Cabe destacar que estos ĺımites no son equivalentes pues existen configuraciones
que son solución de uno de ellos y no aśı del otro. En particular, existen soluciones
que muestran una dependencia expĺıcita del parámetro de ModMax γ. Se encontró
que el ĺımite Carrolliano eléctrico de ModMax es equivalente al de Maxwell, siendo
carente de contribución no-lineal.

Las simetŕıas de los ĺımites Carrollianos de Maxwell fueron obtenidas empleando
el método de simetŕıas puntuales de Lie y se probó que constituyen también
simetŕıas de sus correspondientes contrapartes en los ĺımites Carrollianos de
ModMax mediante la anteriormente mencionada biyección. Estas simetŕıas
incluyen desplazamientos finitos tanto temporales como espaciales, rotaciones
espaciales, impulsos Carrollianos, dilaciones temporales, dilaciones espaciales,
transformaciones conformes especiales Carrollianas de nivel k = 2, súper-
traslaciones temporales, dilataciones de campo y una simetŕıa interna que surge
como legado de la simetŕıa de dualidad en la versión Lorentziana. Debido a
la separación de las dilaciones espacio-temporales en dilaciones espaciales y
temporales, estas simetŕıas no caben dentro de ninguna clasificación de grupos
conformes Carrollianos. Sin embargo, al tomar el sub-álgebra diagonal se encontró
que esta satisface los criterios necesarios para pertenecer al álgebra conforme
Carrolliana de nivel 2.

Keywords – Carroll, Carrollian limits, Electrodynamics, Conformal, Non-linear,
Lie point symmetries
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Abstract

Carrollian limits of Lorentzian field theories have recently found themselves studied
in the last few years as a result of renewed interest on Carrollian theories and
geometry on the theoretical part of physics. Thus the decision to study the
Carrollian limits of Modified-Maxwell (ModMax) theory, the unique conformal
and duality invariant non-linear extension of Maxwell theory, was taken. The
present work contains a derivation of these limits at the level of the equations
of motion and the construction of a Hamiltonian formulation of them. It was
found that the magnetic limit has a non-vanishing non-linear contribution to the
equations of motion controlled by the ModMax parameter γ and that it admits a
bijection with the magnetic limit of Maxwell theory, however, these two are not
equivalent since there exists solutions on one side that are not solutions of the
other and, in particular, there exists solutions with explicit dependence on the
ModMax parameter γ. The electric limit of ModMax was found to be equivalent
of that of Maxwell theory, having no non-linear contribution.

The symmetries of the Carrollian limits of Maxwell theory were obtained through
the use of Lie point symmetry method and are proven to also be symmetries of
the Carrollian limits of ModMax theory by use of the Maxwell-ModMax bijection.
These symmetries include time translations, space translations, Carrollian boosts,
spatial rotations, time dilations, space dilations, special conformal transformations,
field dilations, super-translations on the temporal part and an internal symmetry
that corresponds to a legacy of duality invariance of the Lorentzian theory. Because
of the separation of the space-time dilation into space and time dilations, the
resulting algebra of symmetries does not belong in any categorization of conformal
Carrollian algebras, however, by taking the diagonal sub-algebra it was found
these belong to a subset of the conformal Carrollian algebra of level 2.

Keywords – Carroll, Carrollian limits, Electrodynamics, Conformal, Non-linear,
Lie point symmetries
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Chapter 1

Introducción

1.1 Sobre la estructura

Citando a Tolkien, no siempre resplandece lo que es oro Tolkien (1954) y, en este
caso, no siempre es inmediatamente útil todo lo que está escrito en este trabajo
para entender los resultados presentados.

El caṕıtulo 3 comienza con una presentación básica de geometŕıa pseudo-
Riemanniana, que puede ser saltada si el lector ya se encuentra familiarizado con el
tópico. Esto se encuentra alĺı en caso de que existan dudas sobre las convenciones
usadas. Luego hay una exposición sobre el grupo de Lorentz y se sugiere que el
lector la mantenga presente con objeto de comparar con las simetŕıas encontradas
en la sección destinada a Carroll.

Los siguientes caṕıtulos están compuestos por definiciones útiles e importantes
de geometŕıa Carrolliana además de un breve ejemplo compuesto por el ĺımite
Carrolliano del campo escalar libre, donde se empleó el método de simetŕıas de
contacto de Lie por primera vez en este trabajo.

El caṕıtulo 6 contiene una breve revisión de la teoŕıa de Maxwell, incluyendo la
derivación de sus simetŕıas y su formulación Lagrangiana y Hamiltoniana.

El caṕıtulo 7 es quizá la sección más relevante de esta tesis, debido a que contiene
tanto la derivación de las simetŕıas que aparecen también en los ĺımites de ModMax,
aśı como un análisis de a qué corresponden.

El caṕıtulo 9 es la culminación de este trabajo, pues es donde se demuestra que
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las simetŕıas encontradas previamente en el caṕıtulo 6 corresponden también a
simetŕıas de estos ĺımites. La formulación Hamiltoniana de estos se construye
también aqúı.

Se incluye también un apéndice que contiene lo básico del método de simetŕıas
de contacto de Lie y al lector se le recomienda leerlo si busca poseer un mejor
entendimiento de este trabajo.

1.2 Estado del arte

El grupo de Carroll fue encontrado por primera vez por Levi-Leblond y Bacri en
el art́ıculo Bacry and Levy-Leblond (1968), donde fueron clasificados todos los
posibles grupos cinemáticos. Los requerimientos considerados para ser considerado
un grupo cinemático son poseer una noción de causalidad, poseer espacio isotrópico,
admitir paridad y reversión temporal, y que las transformaciones inerciales
compongan un subgrupo no compacto del grupo total de transformaciones, lo que
corresponde a pedir que existan boosts. Mientras que el grupo de Poincaré posee
las transformaciones de Lorentz, que corresponden a rotaciones hiperbólicas que
mezclan espacio y tiempo, su equivalente en Carroll transforma solo la coordenada
temporal, dejando la parte espacial invariante. Las traslaciones finitas temporales
y espaciales son también parte del grupo de Carroll.

En este art́ıculo también se encontró que el grupo de Galileo, responsable de las
transformaciones de simetŕıa en mecánica clásica, es también uno de los posibles
grupos cinemáticos. Notoriamente, en los últimos años, se ha mostrado que el
grupo de Carroll admite una noción de dualidad con este grupo, véase Figueroa-
O’Farrill (2022), que ambos pueden ser tratados de forma unificada como casos
particulares de una variedad de Bargmann extendida Duval et al. (2014c) y que
existe un método para construir teoŕıas invariantes de Galileo a partir de teoŕıas
invariantes de Carroll y vice-versa utilizando Lagrangianos semilla en Bergshoeff
et al. (2023c).

El grupo de Carroll fue obtenido como una contracción del álgebra de Poincaré
al considerar un caso ĺımite en el que la velocidad de la luz se acerca a cero, lo
que ha probado tener relevancia f́ısica con relación a superficies nulas Herfray
(2022) y su extensión conforme siendo isomorfa al grupo de Bondi Metzer Sachs
Duval et al. (2014b). En este contexto, aspectos Carrollianos han comenzado a ser
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explorados con relación a holograf́ıa de espacio plano Bagchi et al. (2023b) y como
modelos efectivos sobre superficies nulas en variedades Lorentzianas que admiten
movimiento aparente Marsot (2023). El movimiento en geometŕıas de Carroll se
pensaba en un principio imposible debido a la clara separación causal de dicha
geometŕıa pero se han encontrado modelos que poseen propagación fuera de las
lineas de luz1 Ecker et al. (2024) y ha sido mostrado que particulas Carrollianas
acopladas admiten dinámica no-trivial Bergshoeff et al. (2014). Otra posible
aplicación fue encontrada en Bagchi et al. (2024b), donde el flujo de Gubser, que
provee de un modelo anaĺıtico para describir la dinámica de espacio-tiempo de un
plasma de gluónes y quarks producidos en colisiones de iones pesados, junto a sus
suposiciones de simetŕıa asociadas, es argumentado surgen naturalmente como
una consecuencia de las simetŕıas Carrollianas de un fluido Carrolliano. Dado el
contexto de que teoŕıas Carrollianas admiten dinámicas no-triviales, los ĺımites
Carrollianos de p-formas, incluyendo el caso del campo escalar y el de teoŕıas de
Yang-Mills, fueron estudiadas en Henneaux and Salgado-Rebolledo (2021).

Las representaciones unitarias irreducibles de un dipolo de Carroll fueron
encontradas y clasificadas en Figueroa-O’Farrill et al. (2023b) como una
continuación del trabajo presentado en Figueroa-O’Farrill et al. (2023a), donde la
correspondencia Carroll-fractón (que son particulas que no pueden moverse) fue
establecida. Las G-estructuras de Carroll fueron clasificadas en término de sus
torsiones intŕınsecas en Figueroa-O’Farrill (2020).

Desde el lado de gravitación, el ĺımite Carrolliano de la acción de Einstein-
Hilbert fue obtenida en Guerrieri and Sobreiro (2021). Las simetŕıas asintóticas
para teoŕıas gravitacionales Carrollianas en (3 + 1) dimensiones, obtenidas de
contracciones ultra-relativistas (c → 0) eléctricas y magnéticas de relatividad
general fueron analizadas en Pérez (2021). Un principio de acción a la Cartan,
a primer orden, invariante bajo el grupo homogéneo de Carroll para gravedad
Carrolliana eléctrica fue presentada en Pekar et al. (2024). Ha sido sugerido en
de Boer et al. (2022) que las simetŕıas de Carroll podŕıan ser relevantes para
enerǵıa oscura e inflación. Es más, en el art́ıculo Najafizadeh (2024a) se sugiere
que quizá part́ıculas Carrollianas sean un candidato a materia oscura debido a
que generan un campo gravitacional que apunta hacia fuera.

El art́ıculo original Bacry and Levy-Leblond (1968) ha recibido un aumento

1En contraposición con los conos de luz usuales.
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significativo en su número de citas en la última década y una revisión exhaustiva
de todos los trabajos relevantes va más allá del objetivo de este trabajo. Sin
embargo, una buena revisión del tópico puede ser encontrada en Bergshoeff et al.
(2023a) o Ecker et al. (2024) y las referencias que estos contienen.
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Chapter 2

Introduction

2.1 On the structure

To quote Tolkien, all that is gold does not glitter Tolkien (1954), and in this case
not all that is written in this document is immediately useful for understanding
the results presented.

Chapter 1 starts with a presentation of basic stuff of pseudo-Riemannian geometry,
which can be skipped if the reader is already familiar with the subject. This is in
the place it is in case there are doubts on conventions used. Next in this chapter is
an exposition on the Lorentz group and the reader is advised to keep its contents
in mind to compare them with the symmetries obtained in the Carrollian part.

The next chapters are composed of important and useful definitions of Carrollian
geometry as well as a brief example of the Carrollian limits of the free scalar field
theory, where the Lie point symmetry method is employed for the first time in
this work.

Chapter 6 contains a brief review of Maxwell theory, including a derivation of its
symmetries, its Lagrangian description and its Hamiltonian description.

Chapter 7 is perhaps the most relevant part of this thesis, as it contains both the
derivation of the symmetries that appear also in ModMax limits and an analysis
of what they are.

Chapter 9 is the culmination of this work, where it is demonstrated that the
symmetries found in the previous chapter are also symmetries of these limits. The
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Hamiltonian formulation of the electric and magnetic limit of ModMax is also
constructed here.

An appendix containing the basics of the Lie point symmetry method is also
included in this document and the reader is advised to read it if a better insight
on how the work was done is desired.

2.2 State of the art

The Carroll group was first found in the paper Bacry and Levy-Leblond (1968)
by Levi-Leblond and Bacry in 1968. In this paper, all possible kinematic groups
were classified. The requirements for being considered a possible kinematic group
were having a notion of causality, having isotropy of space, admitting parity and
time reversal and that inertial transformations form a non-compact subgroup of
the total group of transformations, that is the requirement of having boosts as
one of the symmetries. While the Poincaré group has boosts that are hyperbolic
rotations that mix space and time, boosts in the Carroll group affect only the
time coordinate while leaving the space part unaffected. Finite space and time
translations and space rotations are also part of the Carroll group.

This paper also found the Galilean group, the symmetry group of non-relativistic
mechanics, to be one of the possible kinematic groups. Notably enough in the
last few years the Carroll group was shown to admit a notion of duality with
the Galilean group Figueroa-O’Farrill (2022) and both of them can be treated in
a unified manner as particular cases in an extended Bargmann manifold Duval
et al. (2014c) and a method for constructing Carroll invariant theories from Galilei
invariant ones was developed by the employment of seed Lagrangians in Bergshoeff
et al. (2023c).

The Carroll group was obtained as a contraction of the Poincaré algebra by
considering the limiting case of the speed of light going to zero, something that
has been proven to have physical significance in relation with null surfaces Herfray
(2022) and its conformal extension being isomorphic to the Bondi–Metzner–Sachs
group Duval et al. (2014b). In this context, Carrollian aspects begun to be
explored in relationship with flat space holography Bagchi et al. (2023b) and
as effective models on null hyper-surfaces in a Lorentzian spacetime admitting
apparent motion Marsot (2023). Motion in Carrollian geometries was first believed
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to not be possible due to the clearly separated causal structure of this geometry
but it has been found that models with interactions admit propagation outside
the light-line1 Ecker et al. (2024) and it has been proved that coupled Carroll
particles admit non-trivial dynamics Bergshoeff et al. (2014). Another possible
application was found in Bagchi et al. (2024b), where Gubser flow, which provides
an analytic model for describing the spacetime dynamics of the quark-gluon plasma
produced in heavy-ion collisions, along with its associated symmetry assumptions
are argued to arise naturally as a consequence of Carrollian symmetries for a
conformal Carroll fluid. Given the context that Carrollian theories admit non-
trivial dynamics, Carrollian limits of general p-forms were studied, including the
scalar case and Yang-Mills theory in Henneaux and Salgado-Rebolledo (2021).

The Unitary Irreducible Representations (UIRs) of Carroll and dipole groups were
found and classified in Figueroa-O’Farrill et al. (2023b) as a continuation of the
work presented in Figueroa-O’Farrill et al. (2023a), where the Carroll-fracton
(which are particles that cannot move) correspondence was established. Carrollian
G-structures were classified in terms of their intrinsic torsion in Figueroa-O’Farrill
(2020).

From the gravity side, the Carroll limit of the Einstein-Hilbert action was
obtained in the year 2021 in the paper Guerrieri and Sobreiro (2021). Asymptotic
symmetries in Carrollian gravitational theories in (3 + 1)-space-time dimensions
obtained from magnetic and electric ultrarelativistic (c → 0) contractions of
General Relativity were analyzed in Pérez (2021). A Cartan-like first-order
homogeneous-Carroll-invariant action principle for electric Carrollian gravity was
presented in Pekar et al. (2024). It was suggested in a 2022 paper de Boer
et al. (2022) that Carrollian symmetries might be relevant for dark energy and
inflation, furthermore, a recent 2024 paper Najafizadeh (2024a) suggests that
Carroll particles may be a candidate for dark matter as they generate an outward
gravitational field.

The original paper Bacry and Levy-Leblond (1968) has received a boost in the
number of citations during the last decade and a thorough revision of all relevant
works is beyond the scope of this work. Nevertheless, a good overview of the
subject can be found in Bergshoeff et al. (2023a) or Ecker et al. (2024) and the
references therein.

1In contrast to the usual light-cone.
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Part I

Preamble and definitions
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Chapter 3

Poincare group, algebra and induced

structure

“ Education had been easy. Learning things had been harder. ”

Hogfather, Terry Pratchett Pratchett (1996).

Relativity principles are a common theme of study in physics, mostly thanks to
Albert Einstein’s work on general relativity but have existed for quite a long time
as they arise from a very simple yet important question:

How do we compare measurements between observers?

If an observer makes a prediction about a system we must be able to reliably
translate said prediction to other observers so we can compare results. This is
rooted on the need for science to be replicable.

It is of fundamental interest to study what kind of transformations between
observers preserve physics. For theses transformations to be consistent a couple
of requirements must be satisfied

1. For any observer Oa, the transformation unto themselves must do nothing.
That is, there must exist a null transformation.
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Oa

Ta→a=id

(3.0.1)

2. For any pair of observers O1 and O2 such that there is a transformation
T1→2 : O1 → O2 there must exist a transformation T2→1 : O2 → O1 that
reverses the effects of T1→2. That is, any transformation must have an
inverse.

O1

O2

T2→1T1→2
(3.0.2)

3. For any trio of observers O1, O2 and O3, the composition of transformations
Ta→b ◦Tb→c must form the transformation Ta→c. Where a, b ∈ {1, 2, 3}. This
is, the composition is a closed operation.

Oa Ob OcTa→b Tb→c

Ta→c

(3.0.3)

4. For any quartet of observers O1, O2, O3 and O4, it must not matter in which
order the composition of transformations Ta→b ◦ Tb→c ◦ Tc→d is carried out.
Where a, b, c, d ∈ {1, 2, 3, 4}. This is nothing but associativity.

Oa Ob Oc OdTa→b Tb→c

Ta→c

Tc→d

Tb→d

(3.0.4)

Those are precisely the group axioms. The set of transformations along with the
composition between them (T, ◦) forms a group.

While this is true for any set of transformations between observers, to properly
define the Poincaré group we need a little more structure.
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3.1 Spacetime structure

A Lorentzian manifold is a pair (ML, g), where ML is a (d+1)-dimensional smooth
manifold and g is a pseudo-Riemannian metric of signature (− + + · · ·+). A
pseudo-Riemannian metric is a non-degenerate, symmetric bilinear form g : ML →
T ∗ML ⊗ T ∗ML

1. Let x : U ⊆ ML → Rd+1 be a chart and X, Y ∈ Γ (TML) be
smooth vector fields, then at any point p ∈ ML

g(p)(X, Y ) = g(p)(Y,X) = g(p)

(
Xµ ∂

∂xµ
, Y ν ∂

∂xν

)
= XµY νg(p)

(
∂

∂xµ
,

∂

∂xν

)
= g(p)µνX

µY ν . (3.1.1)

For simplicity on notation, the dependence on the point p is usually omitted.
In any given chart (U, x) we can write the metric g as g(p)µν dx

µ ⊗ dxν , where
g(p)µν are real numbers and the matrix formed by them is symmetric and non-
degenerate. Using this, it is always possible to find another chart2 (U, y) in which
the coordinate representation of g is diagonal by employment of usual linear
algebra methods.

g(p) = −a(p)dt⊗ dt+
3∑

a=1

fa(p)dy
a ⊗ dya, (3.1.2)

where both a and fa are positively defined functions over ML and (t, ya) are the
coordinates given by the chart (U, y). Choosing the linearly independent 1-forms
eI , with I ∈ {0, 1, 2, 3}, e0 :=

√
a dt and ea :=

√
fadx

a the expression in (3.1.2)
reduces to

g = ηIJe
I ⊗ eJ . (3.1.3)

1The symbol Γ, when anteposing a set, refers to sections over said set.
2We are working under the assumption of having a maximal atlas.
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This construction locally equips the tangent bundle TML with a Minkowski
structure, which will be used shortly after to talk about the Poincaré group.
Before that, it will prove useful to talk a little more about other structure that
arises from the objects in Lorentzian geometry.

Let γ : U ⊆ R → ML be a path in ML and Xγ its tangent vector. We define the
length of the path γ to be the integral3

l[γ] : =

∫
U

√∣∣g(Xγ(τ), Xγ(τ))
∣∣dτ, (3.1.4)

where τ ∈ U is a monotonically increasing parameter. We call g a metric precisely
because it gives us a way to measure lengths. It’s also worthwhile to mention that
g(A,B) is a (pseudo)-inner product between A and B, so sometimes we will be
using the notation

⟨A,B⟩g := g (A,B) (3.1.5)

in places where emphasis in this is wanted.

This equips Γ (TML) with a C∞ (ML,R)-valued norm ∥·∥g and a way of measuring
angles in the usual sense an inner product does. The norm is given by

∥·∥g : Γ (TML) −→ C∞ (ML,R) (3.1.6)

X −→ ∥X∥g :=
√∣∣∣⟨X,X⟩g

∣∣∣, (3.1.7)

and the angle between two vector fields is defined as

3If you have studied relativistic classical mechanics you might recognize this functional.
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θ : Γ (TML)× Γ (TML) −→ C∞ (ML,R) (3.1.8)

(X, Y ) −→ θ (X, Y ) := arccos

( ⟨X, Y ⟩g
∥X∥g∥Y ∥g

)
. (3.1.9)

This definition will be needed when we talk about the conformal group, so keep it
in mind.

3.1.1 Induced structure

Once a choice of metric g is made, it is possible to induce other structure from it.
All in service of making as few arbitrary decisions as necessary. In particular, we
can define a pseudo-inner-product for p-forms, a volume form and the Hodge star
operator. All of them relevant in this work.

3.1.1.1 Co-metric

A very natural question to ask once we have a pseudo-inner product on the tangent
bundle TML is whether we can construct from it one in the cotangent bundle
T ∗ML

4. First we need to construct a map that allows us to get a single co-vector
from any given vector. This is achieved by

Z : Γ (TML) −→ Γ (T ∗ML) (3.1.10)

X −→ Z(X) := g (X, ·) . (3.1.11)

Remark: this can be used to express g (X, Y ) as Z (X) (Y ). Also, the notation
X
Z
:= Z (X) is somewhat used to simplify this, so g (X, Y ) = Z (X) (Y ) = X

Z
(Y ).

With this, we can construct a co-metric g : ML → TML ⊗ TML
5 by imposing the

requirement that for all smooth vector fields X and Y

4The answer is yes, of course. And it follows the same logic as Riesz representation theorem
in quantum mechanics, where given any vector ψ ∈ H in the Hilbert space we get a unique
element of its dual H∗ by the use of the inner product lψ := ⟨ψ, ·⟩.

5If we are really strict, g is a section over (T ∗ML)
∗ ⊗ (T ∗ML)

∗. But the double dual of a finite
vector space is isomorphic to the vector space itself and we like to keep things simple.



14 3.1. Spacetime structure

g (Z(X), Z(Y )) := g (X, Y ) . (3.1.12)

We can, of course, express this in coordinates. Given a choice of a chart x we
have g(dxµ, dxν) = gµν and for arbitrary vector fields A and B we have

g (Z (A) , Z (B)) = g(A,B) (3.1.13)

g(g(A, ·), g(B, ·)) = gαβdx
α ⊗ dxβ(A,B) (3.1.14)

g
(
gµνA

µdxν , gκλB
κdxλ

)
= gαβdx

α(A)dxβ(B) (3.1.15)

gµνA
µgκλB

κg(dxν , dxλ) = gαβA
αBβ (3.1.16)(

gνλgκλ
)
gµνA

µBκ = gαβA
αBβ. (3.1.17)

Then, the requirement of equation (3.1.12) is equivalent to imposing that the
matrix [gµν ] constructed from the components of g is the inverse of that which is
constructed from the components of g. In other words, gµν = δµν . Note that this
implies that for a metric expressed as that of equation (3.1.2) we get a co-metric
expressed as

g(p) = − 1

a(p)

∂

∂t
⊗ ∂

∂t
+

3∑
a=1

1

fa(p)

∂

∂xa
⊗ ∂

∂xa
. (3.1.18)

This also means we can construct a map Z−1 : Γ (T ∗ML) → Γ (TML) by
employment of the co-metric g6

Z−1 : Γ (T ∗ML) −→ Γ (TML) (3.1.19)

ω −→ Z−1(ω) := g (ω, ·) . (3.1.20)

With this, we have a canonical isomorphism between vector fields over ML and

6Hurray for the formalization of raising and lowering indices.
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1-forms over ML

Γ (TML) Γ (T ∗ML)

Z

Z−1

(3.1.21)

Of course, this can be generalized for tensor products of the tangent and cotangent
spaces of ML.

Finally, it may be relevant to remark that the existence of g gives us a pseudo-inner
product over T ∗ML. Let α and ω be covector fields over ML

⟨α, ω⟩g := g (α, ω) . (3.1.22)

This can be neatly summarized in the following diagram

Γ (TML)× Γ (TML)

Ck (ML,R)

Γ (T ∗ML)× Γ (T ∗ML)

Z×Z Z−1×Z−1

g

g

(3.1.23)

Now, dear reader, you may be wondering why so much emphasis on this. The
reason is to make it clear how much of Lorentzian geometry relies on the existence
of a metric. All arrows in (3.1.23) are constructed using g. The requirement that
we can go back and forth between vectors and co-vectors using Z and Z−1 is not
met when we are dealing with degenerate metrics, which appear both in Galilean
and Carrollian geometries.
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3.1.1.2 Volume form

A volume form is a non-degenerate, nowhere vanishing top form over an oriented
manifold7. Both requirements stem from wanting an object that gives a well-defined
notion of volume on a manifold. Most importantly, given a pseudo-Riemannian
metric g over ML, there exists a volume form ωg ∈ Ωd+1 (ML) that, in coordinate
induced basis is expressed as

ωg :=
√

|det gx| dx1 ∧ · · · ∧ dxd+1, (3.1.24)

where det gx is the determinant of the matrix of components [gµν ] with respect to
the chart (U, x).

Now, det g has a very strong dependence on coordinates and whenever one defines
something in such a way, care must be put into verifying that the choice of
coordinates does not matter. Given another chart y : V ⊆ ML → Rd+1 with
non-empty intersection U ∩ V with x : U ⊆ ML → Rd+1 it should be the case we
can transform from (3.1.24) to

ωg =
√

| det gy| dy1 ∧ · · · ∧ dyd+1 (3.1.25)

in the intersection U ∩ V .

Let ϕ : x (U ∩ V ) → y (U ∩ V ) be the chart transition map y◦x−1 and Φ = (ϕ∗)−1.
Then any 1-form α ∈ T ∗ (x (U ∩ V )) transforms under ϕ as Φα. This can be seen
in the following diagram

7An orientation is needed to have a properly defined notion of oriented areas and volumes, which
are used in integration theory in general and in Stokes theorem in particular.



3.1. Spacetime structure 17

T ∗ (y (U ∩ V )) ⊆ R2n T ∗ (U ∩ V ) T ∗ (x (U ∩ V )) ⊆ R2n

y (U ∩ V ) ⊆ Rn (U ∩ V ) ⊆ ML x (U ∩ V ) ⊆ Rn

π

xy

ϕ

πy πx

ϕ∗

T ∗y T ∗x

(3.1.26)

where n = d+ 1. In the particular case of 1-forms dxµ we have

ϕ∗dxµ =
∂xµ

∂yν
dyν , (3.1.27)

therefore, using the distributive property of the pullback we get that for a top
form

Φ
(
dx1 ∧ · · · ∧ dxd+1

)
= Φ dx1 ∧ · · · ∧ Φ dxd+1 (3.1.28)

=

(
∂x1

∂yµ
dyµ
)
∧ · · · ∧ ∂xd+1

∂yν
dyν (3.1.29)

= det

(
∂x

∂y

)
dy1 ∧ · · · ∧ dyd+1 (3.1.30)

= det (Φ) dy1 ∧ · · · ∧ dyd+1, (3.1.31)

and

√
|det gx µν | =

√∣∣∣∣det(gy αβ
∂yα

∂xµ

∂yβ

∂xν

)∣∣∣∣ (3.1.32)

=
√∣∣det gy det (Φ−1)2

∣∣ (3.1.33)

=
√

|det gy|
∣∣det (Φ−1

)∣∣ . (3.1.34)
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Putting it all together and using det (A) det (A−1) = 1 we get

√
| det gx| dx1 ∧ · · · ∧ dxd+1 = sign (detΦ)

√
| det gy| dy1 ∧ · · · ∧ dyd+1. (3.1.35)

But since we are working in an orientable manifold, all chart transition functions
must preserve the orientation. Therefore sign (detΦ) = 1. And so our wonky
definition of a volume form ωg is, in fact, chart independent and we can simplify
the notation as ωg =

√
|det g|dx1 ∧ · · · ∧ dxd+1. Notice that we can also write it

as ωg = e1 ∧ · · · ∧ ed+1.

This is quite important for it allows us to define integration over functions
f ∈ C∞ (ML,R). Let (U, x) be a chart, we define the integration of f over U as

∫
U

f :=

∫
U

fωg, (3.1.36)

where the second term is the usual integration of a top form over a sub-manifold8.
To extend this notion of integration over the entire manifold, a partition of unity
is needed. The reason behind wanting an integration theory of scalar functions
over a Lorentzian manifold is to be able to have action principles in terms of
Lagrangians.

3.1.1.3 Pseudo-inner-product for p-forms

So far we’ve constructed a C∞ (ML)-valued pseudo-inner product on the cotangent
bundle T ∗ML from the one in the tangent bundle TML. A natural question is
whether it is possible to extend this to p-forms α ∈ Ωp (ML). The answer to this
question is, of course, yes.

Consider the function

8i.e.
∫
U
fωg =

∫
x(U)

f(x)
√
|det g|dd+1x
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⟨·, ·⟩ : Ωp (ML)× Ωp (ML) → C∞ (ML)

(a, b) → ⟨a, b⟩ := aα1...αp ḡ
α1β1 . . . ḡαpβpbβ1...βp . (3.1.37)

For this to be a valid notion of a pseudo-inner product we need to check that it’s
invariant under change of coordinates, it’s bilinear and non-degenerate. Coordinate
invariance is easily checked. So is bilinearity since

⟨a, b+ c⟩ = aα1...αp ḡ
α1β1 . . . ḡαpβp

(
bβ1...βp + cβ1...βp

)
(3.1.38)

= aα1...αp ḡ
α1β1 . . . ḡαpβpbβ1...βp + aα1...αp ḡ

α1β1 . . . ḡαpβpcβ1...βp (3.1.39)

= ⟨a, b⟩+ ⟨a, c⟩. (3.1.40)

And the bilinear form ⟨·, ·⟩ is symmetric

⟨a, b⟩ = aα1...αp ḡ
α1β1 . . . ḡαpβpbβ1...βp = bβ1...βp ḡ

α1β1 . . . ḡαpβpaα1...αp = ⟨b, a⟩.
(3.1.41)

Bilinearity checked it only rest to check non-degeneracy, which is a direct
consequence of non-degeneracy of the metric g.

3.1.1.4 Hodge dual star operator

The main topic of this work is electrodynamics, which is a U(1) gauge theory. In
gauge theories we have three main objects to work with: the connection A, its
curvature F and a current J . While it is true it is possible to construct an action
in four dimensions with only this for a U(1) theory, namely

∫
U

F ∧ A ∧ J, (3.1.42)

to build electrodynamics as we know it we need a way to have a non-vanishing
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quadratic term of F and this is not possible without introducing a metric structure
since F ∧ F = d (A ∧ F ) is a border term and therefore yields no dynamics in the
bulk. Here is where the Hodge dual star operator comes into play.

The Hodge dual star operator is the unique map9 ⋆ : Ωk (ML) → Ωd+1−k (ML)

such that for any α, β ∈ Ωp (ML)

α ∧ ⋆β = −⟨α, β⟩ωg. (3.1.43)

In coordinates, the Hodge dual of a p-form α =
1

p!
αµ1...µpdx

µ1 ∧ · · · ∧ dxµp in a

(d+ 1)-dimensional Lorentzian manifold is

(⋆α)νp+1...νd+1
=

1

p!(d+ 1− p)!

√
|det g| αµ1...µp ḡ

µ1ν1 . . . ḡµpνpϵν1...νpνp+1...νd+1
,

(3.1.44)

where ϵµ1...µd+1
is the completely antisymmetric Levi-Civita symbol with orientation

ϵ012...d = 1.

3.1.2 Causal structure

Causal structure refers to a (local) classification of non-zero vectors X ∈ TpML

in the tangent space TpML into space-like, time-like or null if10 g (X,X) > 0,
g (X,X) < 0 or g(X,X) = 0, respectively. This is usually represented as light-
cones, with the interior of said cone corresponding to the sector U+ ∈ ML which can
be reached by light signals emitted at the point p ∈ ML or the sector U− ∈ ML that
can reach the point p with light signals. A smooth curve γ : U ⊆ R → γ (U) ⊂ ML

is called timelike, spacelike or null if its tangent vector γ̇ ∈ Tγ (U) is timelike,
spacelike or null, respectively for every point along the curve γ. A vector field can
also be called timelike, spacelike or null if at every point it satisfies the appropriate
criterion.

9The case of Riemannian geometry has α ∧ ⋆β = ⟨α, β⟩ωg.
10Causal structures can be defined in a purely topological manner without referring to a metric,

as was shown in Rainer (1999).
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Furthermore, a Lorentzian manifold is said to be time-oriented if it admits a
continuous, nowhere vanishing, timelike vector field τ . This vector field is used to
classify timelike vector fields as future-directed or past-directed.

3.1.3 Minkowski spacetime

Let (M, η) be a Lorentzian manifold. We say that (M, η) is Minkowski spacetime
if and only if

1. M is the Cartesian space Rd+1.

2. η is, in standard coordinates, characterized by diag(−1, 1, . . . , 1).

A very important and immediate consequence of this definition is that Minkowski
spacetime is flat. i.e. its curvature vanishes.

3.2 Group structure and decomposition

The isometries of a spacetime structure (M, g) are isomorphisms a : M → M that
preserve this structure. For this to happen it is needed that the metric remains
invariant under the pullback a∗ of a

a∗g = g. (3.2.1)

In other words, for all vector fields X, Y ∈ TM (a∗g) (X, Y ) = g (a∗X, a∗Y ) =

g (X, Y ). Consider the case where the map a is the flow hX
λ : M → M of a vector

field X, then we can construct an equivalent criterion via a differential quotient

(
hX
λ

)∗
g − g = 0 (3.2.2)

lim
λ→0

(
hX
λ

)∗
g − g

λ
= 0 (3.2.3)

LXg = 0, (3.2.4)

where LXg is the Lie derivative of g with respect to the vector field X. This makes



22 3.2. Group structure and decomposition

easy to check whether a vector field X generates a symmetry transformation of
the metric g. The real vector space formed by all vector fields satisfying (3.2.4)
constitute a Lie sub-algebra of the Lie algebra of vector fields over M Sontz (2015)
with Lie bracket

[·, ·] : Γ (TM)× Γ (M) → Γ (TM) (3.2.5)

(A,B) → [A,B] := AB −BA. (3.2.6)

Let A and B be vector fields that generate isometries of g and α a real number,
then their linear combination αA+B is an isometry of g

LαA+Bg = αLAg + LBg = 0, (3.2.7)

this is also the case of their commutator [A,B]

L[A,B]g = LALBg − LBLAg = 0. (3.2.8)

Just as these form an algebra, the isometries themselves constitute a group with
product given by the function composition. Not all isometries can be obtained
through exponentiation a = exp (tX) though, only those connected to the identity.

The Poincaré group ISO(d, 1) is the group of isometries of (d + 1)-dimensional
Minkowski spacetime. In this work we are mostly concerned with 4-dimensional
geometry11, therefore we will be dealing with the group ISO (3, 1) and its algebra
iso (3, 1). Said algebra consists of vector fields X ∈ Γ (TML) satisfying (3.2.4),
this is

iso (3, 1) = {X ∈ Γ (TML)| LXη = 0} . (3.2.9)

11Because our classical world is 4-dimensional.
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3.2.1 Spatial translations

Each spatial translation is a 1-parameter subgroup of the Poincaré group with
generator12

PA :=
∂

∂xA
. (3.2.10)

For checking whether it belongs to the algebra iso (3, 1), it is convenient to use
the following properties of the Lie derivative

LX (S ⊗ T ) = (LXS)⊗ T + S ⊗ (LXT ) LXω = diXω + iXdω, (3.2.11)

where S and T are tensor fields over ML and ω is a p-form. Using these two
properties, the calculation of the necessary Lie derivatives is quite straightforward

LPA
η = LPA

(ηµνdx
µ ⊗ dxν) (3.2.12)

= ηµν (LPA
dxµ)⊗ dxν + ηµνdx

µ ⊗ (LPA
dxν) (3.2.13)

= ηµνd (dx
µ (PA))⊗ dxν + ηµνdx

µ ⊗ d (dxν (PA)) (3.2.14)

= 0. (3.2.15)

So PA ∈ iso (3, 1), we now need to reconstruct its isometry. This is done by the
usual method of finding the integral curves of vector fields PA and then using
them to construct the flows that serve as the action of the 1-parameter subgroup
with generator PA.

12From this point onward, uppercase indices will indicate space, running from 1 to 3 and greek
ones will indicate space-time, running from zero to three.
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Let X be a vector field in the algebra, the flow hX of the vector field X is a
function

hX : R×M → M (3.2.16)

(λ,m) → hX (λ,m) := γm(λ), (3.2.17)

where γm is a solution to the following system of ordinary differential equations

γ̇m(λ) = Xγm(λ) (3.2.18)

with initial conditions γm(0) = m and where γ̇m is the tangent vector to the curve
γ and Xγm is the vector field X evaluated along said curve.

For the case of P1, this equation reads as

ẋ(λ)
∂

∂x
+ ẏ(λ)

∂

∂y
+ ż(λ)

∂

∂z
+ ṫ(λ)

∂

∂t
=

∂

∂x
. (3.2.19)

Using linear independence and solving the equations with initial conditions xµ(0) =

xµ
0 , we conclude that

hP1 (λ, t, x, y, z) = (t, x+ λ, y, z) . (3.2.20)

It follows this is also the case for both P2 and P3, with

hP2 (λ, t, x, y, z) = (t, x, y + λ, z) hP3 (λ, t, x, y, z) = (t, x, y, z + λ) . (3.2.21)

The following picture are shows the flow lines of hP1 , with the horizontal axis
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being x and the vertical axis being the time t13.
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Figure 3.2.1: Integral curves of P1.

3.2.2 Time translations

Time translations are also a 1-parameter subgroup of the Poincaré group and it
shares the exact same shape as spatial translations. Which makes sense since, in
the context of special relativity, time and space are just labels to one sole thing:
space-time.

The generator H ∈ iso (3, 1) of time translations is

H :=
1

c

∂

∂t
. (3.2.22)

We proceed to check whether it generates an isometry via Lie derivative of the
Minkowski metric

LHη = LH (ηµνdx
µ ⊗ dxν) (3.2.23)

= ηµν (LHdx
µ)⊗ dxν + ηµνdx

µ ⊗ (LHdx
ν) (3.2.24)

= ηµνd (dx
µ (H))⊗ dxν + ηµνdx

µ ⊗ d (dxν (H)) (3.2.25)

= 0. (3.2.26)

13This is the usual way of representing space-time in special relativity.
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We now consider the flow equation for time translations

γ̇m(λ) = Hγm(λ) (3.2.27)

ẋ(λ)
∂

∂x
+ ẏ(λ)

∂

∂y
+ ż(λ)

∂

∂z
+ ṫ(λ)

∂

∂t
=

1

c

∂

∂t
. (3.2.28)

The solution of this differential problem with initial conditions xµ(0) = xµ
0 is the

curve γ(t0,x0,y0,z0)(λ) = (t0 + λ/c, x0, y0, z0). Therefore the flow of H is

hH (λ, t, x, y, z) = (t+ λ/c, x, y, z) . (3.2.29)

The isometries hPA and hH are each a representation of the additive group (R,+).
The integral lines of H are represented below, with time as the vertical axis and
space as the horizontal axis.
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Figure 3.2.2: Integral curves of H.

3.2.3 Spatial rotations

Each spatial rotation is a 1-parameter subgroup of the Poincaré group with
generator JA ∈ iso (3, 1) given by
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JA := ϵABCx
B ∂

∂xC
, (3.2.30)

where ϵABC is the 3-dimensional Levi-Civita symbol with ϵ123 = 1.

We check that it satisfies the condition (3.2.4), as we have already done with
spatial and time translations

LJAη = LJA (ηµνdx
µ ⊗ dxν) (3.2.31)

= ηµν (LJAdx
µ)⊗ dxν + ηµνxd

µ ⊗ (LJAdx
ν) (3.2.32)

= ηµνd (dx
µ (JA))⊗ dxν + ηµνdx

µ ⊗ d (dxν (JA)) (3.2.33)

= ηCν ϵABCdx
B ⊗ dxν + ηµC ϵABCdx

µ ⊗ dxB (3.2.34)

= ηCD ϵABCdx
B ⊗ dxD + ηDC ϵABCdx

D ⊗ dxB (3.2.35)

= 0, (3.2.36)

where the last line corresponds to the symmetrization of an antisymmetric object
and is therefore zero. We construct the flows hJA by solving the differential
equations

γ̇m(λ) = Jγm(λ). (3.2.37)

We start with J1, whose differential equation corresponds to

ẋ(λ)
∂

∂x
+ ẏ(λ)

∂

∂y
+ ż(λ)

∂

∂z
+ ṫ(λ)

∂

∂t
= z(λ)

∂

∂y
− y(λ)

∂

∂z
. (3.2.38)

Solving this equation we get the flow

hJ1 (λ, t, x, y, z) = (t, x, y cosλ+ z sinλ, z cosλ− y sinλ) , (3.2.39)
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which corresponds to a rotation of angle λ ∈ R with respect to the x-axis, which
can be thought of as the action of the additive group (S1,+). We repeat the
procedure for J2

ẋ(λ)
∂

∂x
+ ẏ(λ)

∂

∂y
+ ż(λ)

∂

∂z
+ ṫ(λ)

∂

∂t
= x(λ)

∂

∂z
− z(λ)

∂

∂x
. (3.2.40)

Solving this equation we construct J2’s flow

hJ2 (λ, t, x, y, z) = (t, x cosλ− z sinλ, y, z cosλ+ x sinλ) , (3.2.41)

which corresponds to a rotation of angle λ ∈ R with respect to the y-axis, which can
be thought of as the action of the additive group (S1,+). Finally, the differential
equations for J3 are as follows

ẋ(λ)
∂

∂x
+ ẏ(λ)

∂

∂y
+ ż(λ)

∂

∂z
+ ṫ(λ)

∂

∂t
= y(λ)

∂

∂x
− x(λ)

∂

∂y
. (3.2.42)

We use the solution of this equation to construct the flow

hJ3 (λ, t, x, y, z) = (t, x cosλ+ y sinλ, y cosλ− x sinλ, z) , (3.2.43)

which corresponds to a rotation of angle λ ∈ R with respect to the z-axis, which
can be thought of as the action of the additive group (S1,+). The three rotations
put together are an action of the rotation group SO(3)14.

3.2.4 Boosts

Each boost is a one parameter subgroup of the Poincaré group that mixes space
and time in pretty much the same fashion as spatial rotation mixes space. Boosts
have generators BA ∈ iso (3, 1) given by
14Recall this only allows us to recover the connected part to the identity.
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Figure 3.2.3: Integral curves of J1.

BA := ct
∂

∂xA
+

xA

c

∂

∂t
. (3.2.44)

It is noteworthy to mention xA is simply a shorthand to ηABx
B and since we

cleverly chose the signature this is the same as xA and should not be confused
with the musical isomorphisms since this is not a vector nor a covector. We verify
BA ∈ iso (3, 1) as follows

LBA
η = LBA

(ηµνdx
µ ⊗ dxν) (3.2.45)

= ηµν (LBA
dxµ)⊗ dxν + ηµνdx

µ ⊗ (LBA
dxν) (3.2.46)

= ηµνd (dx
µ (BA))⊗ dxν + ηµνdx

µ ⊗ d (dxν (BA)) (3.2.47)

= ηAνcdt⊗ dxν +
1

c
η0νdx

A ⊗ dxν + ηµAdx
µ ⊗ cdt+

1

c
ηµ0dx

µ ⊗ dxA

(3.2.48)

= ηABcdt⊗ dxB − cdxA ⊗ dt+ ηABcdx
B ⊗ dt− cdt⊗ dxA (3.2.49)

= 0. (3.2.50)

Next we construct the flows by solving the appropriate differential equations. For
B1 this equation is
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ẋ(λ)
∂

∂x
+ ẏ(λ)

∂

∂y
+ ż(λ)

∂

∂z
+ ṫ(λ)

∂

∂t
= ct

∂

∂x
+

x

c

∂

∂t
. (3.2.51)

Solving this we conclude that the flow of B1 is

hB1 (λ, t, x, y, z) = (t cosh (cλ) + x sinh (cλ) /c, x cosh (cλ) + ct sinh (cλ) , y, z) .

(3.2.52)

For the vector B2 we’ve got the following equation

ẋ(λ)
∂

∂x
+ ẏ(λ)

∂

∂y
+ ż(λ)

∂

∂z
+ ṫ(λ)

∂

∂t
= ct

∂

∂y
+

y

c

∂

∂t
, (3.2.53)

so the flow of B2 is

hB2 (λ, t, x, y, z) = (t cosh (cλ) + y sinh (cλ) /c, x, y cosh (cλ) + ct sinh (cλ) , z) .

(3.2.54)

Finally, the remaining equation to solve is

ẋ(λ)
∂

∂x
+ ẏ(λ)

∂

∂y
+ ż(λ)

∂

∂z
+ ṫ(λ)

∂

∂t
= ct

∂

∂z
+

z

c

∂

∂t
, (3.2.55)

and the flow of B3 is

hB3 (λ, t, x, y, z) = (t cosh (cλ) + z sinh (cλ) /c, x, y, z cosh (cλ) + ct sinh (cλ)) .

(3.2.56)

We illustrate how these three flows work in the following graph, which corresponds
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to the flow lines of B1
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Figure 3.2.4: Integral curves of B1.

The three spatial rotations hJA together with the three boosts hBA correspond to
the action of the group SO (3, 1).

3.3 Algebra

Having the vector fields that generate iso (3, 1), it is possible to construct their
algebra by taking the differential geometric commutator between them. Recall
that the algebra iso (3, 1) is generated through the linear combination of PA, H,
JA and BA, this is

iso (3, 1) = spanRA, (3.3.1)

where A := {PA, H, JA, BA}A={1,2,3}. This, together with the following
commutators

[PA, PB] = 0 [PA, H] = 0 [PA, JB] = ϵABCJC [PA, BB] = δABH (3.3.2)

[H, JA] = 0 [H,BA] = cPA [JA, JB] = ϵABCJC [JA, BB] = ϵABCBC , (3.3.3)

constitutes the Poincaré algebra. Generators X ∈ iso(3, 1) constitute all isometries
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of Minkowski metric.

3.4 Conformal extension

The Poincaré group are all transformations that preserve the distance defined by the
Minkowski metric. This can be extended to consider all symmetry transformations
that preserve the angles between vector fields as defined in (3.1.8) associated to η.
In other words, transformations such that the angle

θ : Γ (TM)× Γ (TM) −→ C∞ (M,R) (3.4.1)

(X, Y ) −→ θ (X, Y ) := arccos

( ⟨X, Y ⟩η
∥X∥η∥Y ∥η

)
(3.4.2)

remains invariant. Let the map a : M −→ M be a map such that a∗η = Ω2η,
where Ω : M −→ R is a real-valued non-zero function, then for all vector fields
X, Y ∈ Γ (TM) we have

(a∗θ) (X, Y ) = θ (a∗X, a∗Y ) (3.4.3)

= arccos

( ⟨a∗X, a∗Y ⟩η
∥a∗X∥η∥a∗Y ∥η

)
(3.4.4)

= arccos

(
Ω2 ⟨X, Y ⟩η

Ω2∥X∥η∥Y ∥η

)
(3.4.5)

= θ (X, Y ) . (3.4.6)

It follows these transformations are part of the conformal extension. Furthermore,
if a∗η = Ω2η it follows a∗η̄ = Ω−2η̄15, which means a∗ (η ⊗ η̄) = (a∗η)⊗ (a∗η̄) =

η ⊗ η̄. Which can be used to construct a useful criterion to identifying the
generators of conformal symmetries via differential quotient. Let a = exp (λX)

for a real parameter λ and a vector field X, then

15Recall η̄ is the co-metric of η as defined in (3.1.18). This object is usually referred to as inverse
metric but this name is preferably to be avoided.
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exp (λX)∗ (η ⊗ η̄)− η ⊗ η̄ = 0 (3.4.7)

lim
λ→0

exp (λX)∗ (η ⊗ η̄)− η ⊗ η̄

λ
= 0 (3.4.8)

LX (η ⊗ η̄) = 0. (3.4.9)

All vector fields in X ∈ iso(3, 1) satisfy this criterion since LXη = 0 and LX η̄ = 0.
There are two additional generators that extend this algebra, space-time dilations
D and special conformal transformations Sµ. Dilations have generator

D = xA ∂

∂xA
+ t

∂

∂t
. (3.4.10)

The Lie derivative of the metric η with respect to the dilation generator D is
given by

LDη =LD (ηµνdx
µ ⊗ dxν) (3.4.11)

=LD

(
−c2dt⊗ dt+ δABdx

A ⊗ dxB
)

(3.4.12)

=− c2d (dt (D))⊗ dt− c2dt⊗ d (dt (D)) + δABd
(
dxA (D)

)
⊗ dxB

+ δABdx
A ⊗ d

(
dxB (D)

)
(3.4.13)

=2
(
−c2dt⊗ dt+ δABdx

A ⊗ dxB
)

(3.4.14)

=2η. (3.4.15)

The Lie derivative of η̃ with respect to D can be proven to be LDη̃ = −2 η̃,
therefore LD (η ⊗ η̃) = 0 and condition (3.4.9) is satisfied.

The symmetry transformation associated with this vector field is obtained after
solving the system of ordinary differential equations
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ẋ(λ)
∂

∂x
+ ẏ(λ)

∂

∂y
+ ż(λ)

∂

∂z
+ ṫ(λ)

∂

∂t
= x(λ)

∂

∂x
+ y(λ)

∂

∂y
+ z(λ)

∂

∂z
+ t(λ)

∂

∂t
.

(3.4.16)

Solutions with initial conditions of this system of ODEs are used to build the
flows that serve as the action of space-time dilations

hD (λ, t, x, y, z) =
(
eλt, eλx, eλy, eλz

)
, (3.4.17)

which, of course, corresponds to acting with a multiplicative factor on all space-time
coordinates.

Special conformal transformations are the less obvious conformal transformations.
The temporal special conformal transformation is generated by the vector field S0

S0 = −2c2tx
∂

∂x
− 2c2ty

∂

∂y
− 2c2tz

∂

∂z
−
(
c2t2 + x2 + y2 + z2

) ∂

∂t
. (3.4.18)

The Lie derivative of the metric η with respect to the vector field S0 is computed
as follows
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LS0η =LS0 (ηµνdx
µ ⊗ dxν) (3.4.19)

=LS0

(
−c2dt⊗ dt+ δABdx

A ⊗ dxB
)

(3.4.20)

=− c2d (dt (S0))⊗ dt− c2dt⊗ d (dt (S0)) + δABd
(
dxA (S0)

)
⊗ dxB

+ δABdx
A ⊗ d

(
dxB (S0)

)
(3.4.21)

=c2d
(
c2t2 + δABx

AxB
)
⊗ dt+ c2dt⊗ d

(
c2t2 + δABx

AxB
)

− 2c2δABd
(
txA
)
⊗ dxB − 2c2δABdx

A ⊗ d
(
txB
)

(3.4.22)

=2c2
(
c2tdt+ δABx

BdxA
)
⊗ dt+ 2c2dt⊗

(
c2tdt+ δABx

AdxB
)

− 2c2δABx
Adt⊗ dxB − 2c2tdxA ⊗ dxB − 2c2δABdx

A ⊗ xBdt

− 2c2δABdx
A ⊗ tdxB (3.4.23)

=− 2c2t
(
−c2dt⊗ dt+ δABdx

A ⊗ dxB
)

(3.4.24)

=− 4c2t η. (3.4.25)

The Lie derivative of η̃ with respect to S0 can be proven to be LS0 η̃ = 4c2t η̃,
therefore LS0 (η ⊗ η̃) = 0 and condition (3.4.9) is satisfied. To find the
transformation associated to S0 we need to first solve the system of ODEs

0 =ẋ(λ)
∂

∂x
+ ẏ(λ)

∂

∂y
+ ż(λ)

∂

∂z
+ ṫ(λ)

∂

∂t

+ 2c2t(λ)x(λ)
∂

∂x
+ 2c2t(λ)y(λ)

∂

∂y
+ 2c2t(λ)z(λ)

∂

∂z

+
(
c2t(λ)2 + x(λ)2 + y(λ)2 + z(λ)2

) ∂

∂t
. (3.4.26)

This system has a unique solution for given initial conditions, which is used to
construct the transformations as flows
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hS0(λ, t, x, y, z) =

(
(−c2t2 + x2 + y2 + z2) (t− λ (−c2t2 + x2 + y2 + z2))

−c2 (t− λ (−c2t2 + x2 + y2 + z2))2 + x2 + y2 + z2
,

x (−c2t2 + x2 + y2 + z2)

−c2 (t− λ (−c2t2 + x2 + y2 + z2))2 + x2 + y2 + z2
,

y (−c2t2 + x2 + y2 + z2)

−c2 (t− λ (−c2t2 + x2 + y2 + z2))2 + x2 + y2 + z2
,

z (−c2t2 + x2 + y2 + z2)

−c2 (t− λ (−c2t2 + x2 + y2 + z2))2 + x2 + y2 + z2

)
.

(3.4.27)

The special conformal transformation in the x-direction has generator S1 given by

S1 =
(
c2t2 + x2 − y2 − z2

) ∂

∂x
+ 2xy

∂

∂y
+ 2xz

∂

∂z
+ 2tx

∂

∂t
. (3.4.28)

The Lie derivative of the Minkowski metric η with respect to the vector field S1 is
computed as follows

LS1η =LS1

(
−c2dt⊗ dt+ δABdx

A ⊗ dxB
)

(3.4.29)

=− c2d (dt (S1))⊗ dt− c2dt⊗ d (dt (S1)) + δABd
(
dxA (S1)

)
⊗ dxB

+ δABdx
A ⊗ d

(
dxB (S1)

)
(3.4.30)

=− c2d (2tx)⊗ dt− c2dt⊗ d (2tx) + δABd
(
2xxA

)
⊗ dxB

+ δABdx
A ⊗ d

(
2xxB

)
− d (ηµνx

µxν)⊗ dx− dx⊗ d (ηµνx
µxν) (3.4.31)

=− 4c2xdt⊗ dt− 2c2tdx⊗ dt− 2c2tdt⊗ dx+ 4xδABdx
A ⊗ dxB

+ 2xAδABdx⊗ dxB + 2xBδABdx
A ⊗ dx− 2ηµνx

µdxν ⊗ dx

− 2ηµνx
νdx⊗ dxµ (3.4.32)

=4x
(
−c2dt⊗ dt+ δABdx

A ⊗ dxB
)

(3.4.33)

=4x η. (3.4.34)

The Lie derivative of η̃ with respect to S1 can be proven to be LS1 η̃ = −4x η̃,
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therefore LS1 (η ⊗ η̃) = 0 and condition (3.4.9) is satisfied. To find the
transformation associated to S1 we need to first solve the system of ODEs

0 =ẋ(λ)
∂

∂x
+ ẏ(λ)

∂

∂y
+ ż(λ)

∂

∂z
+ ṫ(λ)

∂

∂t

−
(
c2t(λ)2 + x(λ)2 − y(λ)2 − z(λ)2

) ∂

∂x

− 2x(λ)y(λ)
∂

∂y
− 2x(λ)z(λ)

∂

∂z
− 2t(λ)x(λ)

∂

∂t
. (3.4.35)

This system has unique solution for given initial conditions, using this the
transformations are built as a flow

hS1 (λ, t, x, y, z) =

(
t (−c2t2 + x2 + y2 + z2)

(x− λ (−c2t2 + x2 + y2 + z2))2 − c2t2 + y2 + z2
,

(−c2t2 + x2 + y2 + z2) (x− λ (−c2t2 + x2 + y2 + z2))

(x− λ (−c2t2 + x2 + y2 + z2))2 − c2t2 + y2 + z2
,

y (−c2t2 + x2 + y2 + z2)

(x− λ (−c2t2 + x2 + y2 + z2))2 − c2t2 + y2 + z2
,

z (−c2t2 + x2 + y2 + z2)

(x− λ (−c2t2 + x2 + y2 + z2))2 − c2t2 + y2 + z2

)
. (3.4.36)

The special conformal transformation in the y-direction has generator S2 given by

S2 = 2xy
∂

∂x
+
(
c2t2 − x2 + y2 − z2

) ∂

∂y
+ 2yz

∂

∂z
+ 2ty

∂

∂t
. (3.4.37)
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The Lie derivative of the metric η with respect to the vector field S2 is computed
as follows

LS2η =LS2

(
−c2dt⊗ dt+ δABdx

A ⊗ dxB
)

(3.4.38)

=− c2d (dt (S2))⊗ dt− c2dt⊗ d (dt (S2)) + δABd
(
dxA (S2)

)
⊗ dxB + δABdx

A ⊗ d
(
dxB (S2)

)
(3.4.39)

=− c2d (2ty)⊗ dt− c2dt⊗ d (2ty) + δABd
(
2yxA

)
⊗ dxB + δABdx

A ⊗ d
(
2yxB

)
− d (ηµνx

µxν)⊗ dy − dy ⊗ d (ηµνx
µxν) (3.4.40)

=− 4c2ydt⊗ dt− 2c2tdy ⊗ dt− 2c2tdt⊗ dy + 4yδABdx
A ⊗ dxB

+ 2xAδABdy ⊗ dxB + 2xBδABdx
A ⊗ dy − 2ηµνx

µdxν ⊗ dy − 2ηµνx
νdy ⊗ dxµ

(3.4.41)

=4y
(
−c2dt⊗ dt+ δABdx

A ⊗ dxB
)

(3.4.42)

=4y η. (3.4.43)

The Lie derivative of η̃ with respect to S2 can be proven to be LS2 η̃ = −4y η̃,
therefore LS2 (η ⊗ η̃) = 0 and condition (3.4.9) is satisfied. To find the
transformation associated to S2 we need to first solve the system of ODEs

0 =ẋ(λ)
∂

∂x
+ ẏ(λ)

∂

∂y
+ ż(λ)

∂

∂z
+ ṫ(λ)

∂

∂t
(3.4.44)

− 2x(λ)y(λ)
∂

∂x
−
(
c2t(λ)2 − x(λ)2 + y(λ)2 − z(λ)2

) ∂

∂y
− 2y(λ)z(λ)

∂

∂z
− 2t(λ)y(λ)

∂

∂t
.

(3.4.45)

This system has a unique solution for given initial conditions. Using these solutions,
the transformations are built as a flow
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hS2 (λ, t, x, y, z) =

(
t (−c2t2 + x2 + y2 + z2)

(y − λ (−c2t2 + x2 + y2 + z2))2 − c2t2 + x2 + z2
,

x (−c2t2 + x2 + y2 + z2)

(y − λ (−c2t2 + x2 + y2 + z2))2 − c2t2 + x2 + z2
,

(−c2t2 + x2 + y2 + z2) (y − λ (−c2t2 + x2 + y2 + z2))

(y − λ (−c2t2 + x2 + y2 + z2))2 − c2t2 + x2 + z2
,

z (−c2t2 + x2 + y2 + z2)

(y − λ (−c2t2 + x2 + y2 + z2))2 − c2t2 + x2 + z2

)
. (3.4.46)

The special conformal transformation in the z-direction has generator S3 given by

S3 = 2xz
∂

∂x
+ 2yz

∂

∂y
+
(
c2t2 − x2 − y2 + z2

) ∂

∂z
+ 2tz

∂

∂t
. (3.4.47)

The Lie derivative of the metric η with respect to the vector field S3 is computed
as follows

LS1η =LS3

(
−c2dt⊗ dt+ δABdx

A ⊗ dxB
)

(3.4.48)

=− c2d (dt (S3))⊗ dt− c2dt⊗ d (dt (S3)) + δABd
(
dxA (S3)

)
⊗ dxB

+ δABdx
A ⊗ d

(
dxB (S3)

)
(3.4.49)

=− c2d (2tz)⊗ dt− c2dt⊗ d (2tz) + δABd
(
2zxA

)
⊗ dxB

+ δABdx
A ⊗ d

(
2zxB

)
− d (ηµνx

µxν)⊗ dz − dz ⊗ d (ηµνx
µxν) (3.4.50)

=− 4c2zdt⊗ dt− 2c2tdz ⊗ dt− 2c2tdt⊗ dz + 4zδABdx
A ⊗ dxB

+ 2xAδABdz ⊗ dxB + 2xBδABdx
A ⊗ dz − 2ηµνx

µdxν ⊗ dz

− 2ηµνx
νdz ⊗ dxµ (3.4.51)

=4z
(
−c2dt⊗ dt+ δABdx

A ⊗ dxB
)

(3.4.52)

=4z η. (3.4.53)

The Lie derivative of η̃ with respect to S3 can be proven to be LS3 η̃ = −4z η̃,
therefore LS3 (η ⊗ η̃) = 0 and condition (3.4.9) is satisfied. To find the
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transformation associated to S3 we need to first solve the system of ODEs

0 =ẋ(λ)
∂

∂x
+ ẏ(λ)

∂

∂y
+ ż(λ)

∂

∂z
+ ṫ(λ)

∂

∂t

− 2x(λ)z(λ)
∂

∂x
− 2t(λ)z(λ)

∂

∂t

− 2y(λ)z(λ)
∂

∂y
−
(
c2t(λ)2 − x(λ)2 − y(λ)2 + z(λ)2

) ∂

∂z
. (3.4.54)

This system has a unique solution for given initial conditions, which are used to
construct the transformation as a flow

hS3 (λ, t, x, y, z) =

(
t (−c2t2 + x2 + y2 + z2)

(z − λ (−c2t2 + x2 + y2 + z2))2 − c2t2 + x2 + y2
,

x (−c2t2 + x2 + y2 + z2)

(z − λ (−c2t2 + x2 + y2 + z2))2 − c2t2 + x2 + y2
,

y (−c2t2 + x2 + y2 + z2)

(z − λ (−c2t2 + x2 + y2 + z2))2 − c2t2 + x2 + y2
,

(−c2t2 + x2 + y2 + z2) (z − λ (−c2t2 + x2 + y2 + z2))

(z − λ (−c2t2 + x2 + y2 + z2))2 − c2t2 + x2 + y2

)
.

(3.4.55)

The conformal group consists then of space-time translations, space rotations,
boosts, space-time dilations and special conformal transformations. It was shown
by Coleman-Mandula in Coleman and Mandula (1967) that this is the most
general space-time symmetry group of a non-trivial, relativistic field theory and
has a strong presence in theoretical physics.
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3.4.1 Algebra

The algebra of the group ISO (3, 1) is obtained by taking the differential-geometric
commutator of all generators of the group and is given by

[PA, PB] = 0 [PA, H] = 0 [PA, JB] = ϵABCJC (3.4.56)

[PA, BB] = δABH [H, JA] = 0 [H,BA] = cPA (3.4.57)

[JA, JB] = ϵABCJC [JA, BB] = ϵABCBC [H,SA] = 2BA (3.4.58)

[H,S0] = 2cD [PA, SB] = 2δABD + ϵABCJC [PA, S0] = −2cBA (3.4.59)

[JA, SB] = ϵABCSC [JA, S0] = 0 [BA, SB] = −1

c
δABS0

(3.4.60)

[BA, S0] = −cBA [PA, D] = PA [H,D] = −H (3.4.61)

[JA, D] = 0 [BA, D] = 0 [D,SA] = SA (3.4.62)

[D,S0] = S0. (3.4.63)
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Chapter 4

Carroll group and Carrollian algebra

The Carroll group was first described by Levy-Leblond in 1968 in Bacry and
Levy-Leblond (1968) in an effort to categorize all possible kinematic groups that
allow for boosts, rotations, translations and have some notion of causality. The
Carrollian limit is also called the ultra-relativistic limit, in which the speed of
light is taken to zero. This causes the collapse of all causal cones into causal lines,
meaning every point can only causally affect itself. Because of this, it was first
believed Carroll-invariant field theories were all static, but there have been models
found to admit dynamical solutions in the presence of interactions.

The Carrollian Lie algebra was first obtained as a contraction of the Poincaré
algebra as the limiting case of taking the speed of light to zero and was, rightfully
so, ignored since there was no physical reason to be interested in it.

Now, of course, we have reasons to care.

Since then, Carrollian geometry has found its footing in theoretical physics in
the gravity and cosmological side. From effective physics at null infinity Herfray
(2022) to dark matter studies Avila et al. (2023), Carroll has become a part of the
landscape of relevant groups in our discipline.

Study of Carrollian limits requires a background on Carrollian geometry, which is
briefly presented here. We start by defining some structure. A Carroll manifold is
a quadruple (C, g, ξ,∇), where Duval et al. (2014c)

• C is a (d+ 1)-smooth manifold.
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• g is a rank 2 degenerate metric tensor field.

• ξ is a nowhere vanishing complete vector field which spans ker(g).

• ∇ is a symmetric affine connection that parallel transports both g and ξ.

Notice that there is a significant difference between a Lorentzian manifold and
a Carrollian one. Namely, there is not a non-degenerate metric tensor field1 in
a Carrollian manifold. An immediate consequence of this is there is mostly no
metric induced structure, no pseudo-inner products to be had, no volume form
constructed from the metric.

A Carroll group is the group of automorphisms of a Carroll structure.

4.1 Flat Carrollian structure

The standard flat Carroll structure is given by the choice

Cd+1 = R× Rd g = δABdx
A ⊗ dxB ξ =

∂

∂s
Γi
jk = 0.

This spatial Carroll metric can also be obtained from the Minkowski metric
dS2 = −dx0 ⊗ dx0 + δABdx

A ⊗ dxB by choosing s = Cx0 and taking C → ∞.
These choices may seem arbitrary but are in fact a consequence of them coming
from Minkowski spacetime. Indeed, the reason why the underlying manifold is a
power of the real numbers and the connection is set to zero is the same.

4.2 Flat Carroll group action

The Carroll group is formed by the set of automorphisms that preserve the
Carrollian structure. Let a : Cd+1 → Cd+1 be one such a map, then we have

a∗g = g a∗ξ = ξ a∗∇ = ∇. (4.2.1)

1Although there exists a killing form in (2 + 1) dimensions Matulich et al. (2019).
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The set of all transformations that leave the flat Carrollian structure invariant is
the flat Carroll group Carr (d+ 1). This is

Carr (d+ 1) =
{
a ∈ End

(
Cd+1

)∣∣ a∗g = g ∧ a∗ξ = ξ ∧ a∗∇ = ∇
}
. (4.2.2)

This set is conformed by spatial rotations, time translations, space translations
and time boosts.

The bilinear function g is only degenerate in the full Carrollian manifold. If we
were to consider the restriction to the spatial part we would be looking at the
standard inner product in Rd. It follows we have a well-defined notion of rotations
in this submanifold given by the group orthogonal group O(d).

Time translations are characterized by the additive group (R,+). Likewise, spatial
translations are characterized by

(
Rd,+

)
.

Time boosts are also formed by the additive group
(
Rd,+

)
but their action comes

in a slightly more complicated way, namely, a semi-direct product.

Putting it all together, the flat Carroll group can be written as

Cd+1 =
(
R⊕ Rd

)
⋊O (d) . (4.2.3)

Given our choices, representatives of Carr(d+ 1) and Cd+1 are of the form

a =


R 0 c

−bTR 1 f

0 0 1

 ∈ Carr(d+ 1) x =

(
s

x

)
∈ Cd+1, (4.2.4)

where R ∈ O(d) is a d-dimensional orthogonal matrix, b, c ∈ Rd are both d-
dimensional real vectors and f ∈ R is a real number. Which allows us to define
the action



4.3. Carrollian Lie algebra 45

▷C : Carr(d+ 1)× Cd+1 −→ Cd+1 (4.2.5)

(a, x) −→ a▷C x :=

[
s− bTRx+ f

Rx+ c

]
, (4.2.6)

which is just the matrix multiplication of a and x.

4.3 Carrollian Lie algebra

With this in mind, it’s possible to define its Lie algebra carr(d + 1), which is
composed of vector field of the form

X =
(
ωA

Bx
B + γA

) ∂

∂xA
+
(
φ− βAx

A
) ∂

∂s
, (4.3.1)

where ω ∈ so(d), β, γ ∈ Rd and φ ∈ R. Vector fields X ∈ carr (d+ 1) satisfy the
infinitesimal version of invariance conditions shown in (4.2.1)

LXg = 0 LXξ = 0 LX∇ = 0. (4.3.2)

These conditions allows us to define the flat2 Carrollian lie algebra carr (d+ 1) as

carr (d+ 1) :=
{
X ∈ Γ

(
TCd+1

)∣∣LXg = 0 ∧ LXξ = 0 ∧ LX∇ = 0
}
. (4.3.3)

Of course, one can consider each kind of transformation separately

PA =
∂

∂xA
JA = ϵABCxB

∂

∂xC
KA = xA

∂

∂s
P0 =

∂

∂s
(4.3.4)

2The insistence on flat is to distinguish it from the conformal case, in which the requirement
placed on the connection is dropped and the remaining two conditions are modified.
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and construct the algebra by taking the differential-geometric commutator of these
vector fields

[·, ·] : Γ
(
TCd+1

)
× Γ

(
TCd+1

)
−→ Γ

(
TCd+1

)
(4.3.5)

(A,B) −→ [A,B]. (4.3.6)

This is

[JA, JB] = ϵABCJC [JA, KB] = ϵABCKC [KA, KB] = 0 (4.3.7)

[JA, PB] = ϵABCPC [KA, PB] = δABP0 [JA, P0] = 0 (4.3.8)

[KA, P0] = 0 [PA, PB] = 0 [PA, P0] = 0. (4.3.9)

This can also be obtained as contraction from the Poincare algebra, as was done
in the original paper Bacry and Levy-Leblond (1968).

Reconstruction of the symmetries by using their generators is possible by the
usual method, which has been done for Lorentz symmetry in 3.2 and in this case
reproduces the action ▷C defined in (4.2.6). Explicit reconstruction of Carrollian
symmetries is done for electrodynamics in a following chapter.

4.4 Conformal extension

Carrollian limits of Maxwell and ModMax theory have symmetries belonging to
the conformal Carroll group of level two. For this reason we must employ some
time talking about conformal extensions of the flat Carroll group Carr (d+ 1).
Flatness as a requirement is dropped for the conformal extensions3, which means
time translations and Carrollian boosts can be condensed in a single

(
C∞ (Rd

)
,+
)

additive group. Let f ∈ C∞ (Rd
)
, then super-translations

3The paper Duval et al. (2014a) also makes the distinction between strong Carroll structure(
Cd+1, g, ξ,∇

)
and weak Carroll structure

(
Cd+1, g, ξ

)
, with the infinite dimensional super-

translations being a part of the endomorphisms of weak Carroll structure.
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s −→ s+ f(x, y, z) (4.4.1)

are allowed as part of any conformal extension of Carr (d+ 1). The flat Carroll
group admits various conformal extensions, which appear in different cases of
Carrollian limits of relativistic conformal field theories. These extensions are
categorized by a natural number k. Let us then define the Conformal Carroll
group of level k CCarrk (d+ 1) to be the set

CCarrk (d+ 1) :=
{
a ∈ End

(
Cd+1

)∣∣ a∗ (g ⊗ ξ⊗k
)
= g ⊗ ξ⊗k

}
, (4.4.2)

where k ∈ N0 is a natural number and ξ⊗k is the k-th tensor power of the vector
field ξ

ξ⊗k :=
k⊗

n=0

ξ. (4.4.3)

Requirement (4.4.2) can be put into differential form, which allows to define the
conformal Carrollian Lie algebra of level k, denoted by ccarrk (d+ 1).

First let the group element a = exp (λX) be a 1-parameter subgroup generated by
X ∈ ccarrk (d+ 1), then we can construct a Lie derivative by using a differential
quotient with the group parameter λ

exp (λX)∗
(
g ⊗ ξ⊗k

)
− g ⊗ ξ⊗k = 0 (4.4.4)

lim
λ→0

exp (λX)∗
(
g ⊗ ξ⊗k

)
− g ⊗ ξ⊗k

λ
= 0 (4.4.5)

LX

(
g ⊗ ξ⊗k

)
= 0 (4.4.6)

Then the desired definition of the conformal Carrollian Lie algebra of level k is
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ccarrk (d+ 1) :=
{
X ∈ Γ

(
TCd+1

)∣∣LX

(
g ⊗ ξ⊗k

)
= 0
}

(4.4.7)

Sufficient and necessary condition for this to happen is4

LXg = Ωg LXξ = −Ω

k
ξ (4.4.8)

Where Ω : Cd+1 −→ R is an arbitrary real-valued section over the space Cd+1.
Were this not the case, there would be additional terms in the Lie derivative
LX

(
g ⊗ ξ⊗k

)
. Further analysis of conformal Carrollian groups of level k = 2 are

done when discussing the symmetries of Carrollian limits of Maxwell theory, other
cases are beyond the scope of this work.

4These conditions are more useful for actual computations, which will be seen further along the
road.
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Chapter 5

Carrollian limits of a scalar field

The simplest (3 + 1)-Lorentzian theory in which we can take the Carrollian limit
and therefore use as an example for the procedure of the work to come is that of
the scalar field. We start by writing the action of the free scalar field

S [ϕ, dϕ] = −
∫
Ω

1

2
⟨dϕ, dϕ⟩ d4x (5.0.1)

=

∫
Ω

[
1

2c2

(
∂ϕ

∂t

)2

− 1

2
∇ϕ · ∇ϕ

]
d4x, (5.0.2)

where Ω ⊆ R4 is an open submanifold of Minkowski spacetime. Arriving at the
equations of motion for this field theory is standard practice and can be seen,
for example, in Schwartz (2014). In this case, a procedure inspired by Goldstein
et al. (2002) will be used. We start by considering a variation characterized by a
one-parameter family of scalar fields

ϕ(α) := ϕ+ αa, (5.0.3)

where α ∈ R and a is a C1 Lebesgue integrable scalar field and we assume that
the action gets an extreme value at ϕ(0). This way, the action in (5.0.1) becomes
S [ϕ(0), dϕ(0)], where
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S [ϕ(α), dϕ(α)] = −
∫
Ω

⟨dϕ(α), dϕ(α)⟩ d4x (5.0.4)

= −
∫
Ω

[
1

2
⟨dϕ, dϕ⟩+ α ⟨dϕ, da⟩+ 1

2
α2 ⟨da, da⟩

]
d4x. (5.0.5)

To be able to carry on it is important to integrate by parts the middle term

−
∫
Ω

⟨dϕ, da⟩ d4x =

∫
Ω

⋆dϕ ∧ da+ d ⋆ dϕ ∧ a− d ⋆ dϕ ∧ a (5.0.6)

=

∫
∂Ω

⋆dϕ ∧ a−
∫
Ω

d ⋆ dϕ ∧ a. (5.0.7)

Using this we can construct the functional derivative as we would a real derivative

dS[ϕ, dϕ]

dα
(0) : = lim

α→0

S[ϕ(α), dϕ(α)]− S[ϕ(0), dϕ(0)]

α
(5.0.8)

= lim
α→0

∫
R4

[
⟨⋆d ⋆ dϕ, a⟩ − 1

2
α ⟨da, da⟩

]
d4x (5.0.9)

=

∫
R4

⟨⋆d ⋆ dϕ, a⟩ d4x, (5.0.10)

and since the pseudo-inner product is non-degenerate1 it follows that

⋆d ⋆ dϕ = 0. (5.0.11)

This, of course, is just the wave equation for the scalar field

1

c2
∂2ϕ

∂t2
−∇2ϕ = 0. (5.0.12)

1Although in this case it is a little obscene to talk about pseudo-inner products since both
⋆d ⋆ dϕ and a are scalars and ⟨⋆d ⋆ dϕ, a⟩ = a ⋆ d ⋆ dϕ. However, this serves to illustrate the
Maxwell case.
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Now2, it is important to remark here the role played by the pseudo-inner-product
of Lorentzian geometry.

1. Both the Hodge star operator and pseudo-inner products ⟨·, ·⟩ are explicitly
constructed in terms of the metric, which implies the of the equation of
motion is metric-dependent.

2. The volume measure is also constructed to be metric-compatible.

This is an integral part of Lagrangian descriptions of fields. In fact, in classical
mechanics it is usually overlooked that you only can construct Lagrangians because
you can take two velocity vectors and map them into kinetic energy. This is, of
course, not the case in neither Carrollian nor in Galilean geometry where there is
not a non-degenerate bilinear form.

At this point, you could multiply (5.0.12) by c2 or make the transition to Carrollian
units and taking the limit c → 0 or C → ∞ to the same effect. Personally, I’ll do
the latter for consistency

∂2ϕ

∂s2
= 0. (5.0.13)

This is Carroll invariant because neither
∂

∂s
nor ϕ transform under Carroll. And

that’s it, right? The Carrollian limit of the scalar field. Well, no. The free scalar
field admits two non-equivalent Carrollian limits, the so-called electric we just
obtained and the so-called magnetic one which can be obtained via Hamiltonian
formalism.

5.1 At the level of the Hamiltonian

Both electric and magnetic limits can be independently constructed from the
Hamiltonian formalism of free scalar field theory. The magnetic limit is obtained
by taking the limit c → 0 in the action written in canonical variables. The electric
limit is obtained by doing the same after a convenient field reparametrization.

2Dear reader, if you’re thinking I could’ve just used a coordinate description and be done with
it you’d be absolutely correct. However, you can’t stop me.
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We start by building the action in canonical variables, for doing so we must define
the canonical momentum density π =

∂L
∂ϕ̇

=
1

c2
∂ϕ

∂t
. We arrive to the Hamiltonian

action principle after performing the Legendre transformation

H =
∂L
∂ϕ̇

ϕ̇− L =
c2

2
π2 +

1

2
∇ϕ · ∇ϕ. (5.1.1)

Replacing this in the action allows us to separate the degrees of freedom into the
scalar field and its canonically conjugate momentum π

S [π, ϕ] =

∫
R4

d4x
[
πϕ̇−H

]
(5.1.2)

=

∫
R4

d4x

[
c2

2
π2 − 1

2
∇ϕ · ∇ϕ

]
. (5.1.3)

The equations of motion in the Hamiltonian formalism for the scalar field are

π̇ = −∂H
∂ϕ

+
∂

∂xi

(
∂H

∂(∂iϕ)

)
ϕ̇ =

∂H
∂π

− ∂

∂xi

(
∂H

∂(∂iπ)

)
(5.1.4)

= ∇2ϕ = π. (5.1.5)

By combining these two equations the wave equation is recovered.

5.1.1 Magnetic limit of the scalar free field

As was previously stated, the magnetic limit of free scalar field theory is recovered
by taking the limit c → 0 in the action written in term of canonical variables
(ϕ, π), as was shown in Henneaux and Salgado-Rebolledo (2021)

SM [π, ϕ] = −
∫
R4

d4xHM , (5.1.6)

with Hamiltonian density given by
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HM = ∇ϕ · ∇ϕ. (5.1.7)

Computation of the equations of motion gives as result

π̇ = ∇2ϕ ϕ̇ = 0. (5.1.8)

An important thing to consider in this case is that for any temporal slice, solutions
of the EOM will satisfy Laplace’s equation. In the previous chapter it was said
different kind of conformal field theories’ Carrollian limits may have different
k-level of Carrollian conformal symmetry. This is an example of such cases.

The following was obtained by the Lie point symmetry method, by considering
the space (Fm, п, C3+1) with independent variables (s,x) and dependent variables
(ϕ, π) with projection map

п : Fm −→ C3+1 (5.1.9)

(s,x, ϕ, π) −→ п (s,x, ϕ, π) = (s,x) . (5.1.10)

These equations of motion are constructed from the extended tangent space of
Fm

3 and their symmetries include time translations, spatial translations4, spatial
rotations, spatial dilations, special conformal transformations, time dilations, field
dilations and an infinite sector that comes from there not being spatial derivatives
of the conjugate momentum. These symmetries were obtained by considering the
pair (5.1.8) as they stand.

Time translations have as generator the vector field P0 ∈ Γ (TFm) given by

3Strictly speaking, the necessary math to properly talk about this machinery is that of jet
bundles. However, that’s beyond the scope of this work.

4Carrollian boosts were not obtained by this method although we know they are a symmetry of
this system of equations.
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P0 =
∂

∂s
. (5.1.11)

The transformation for each generator X ∈ Γ (TFm) is built by the usual method.
Let p ∈ Fm = (s0,x0, ϕ0, π0) be a point to serve as initial conditions for the system
of ordinary differential equations γ̇X (λ) = XγX (λ) , with curve γX : R −→ Fm. A
solution to this system with initial conditions γX (0) = p is denoted by γX

p (λ).
Symmetry transformations are then built by using the flows

hX : R×Fm −→ Fm (5.1.12)

(λ, f) −→ hX (λ, f) = γX
f (λ). (5.1.13)

By doing this, time translations are recovered as a flow

hP0 : R×Fm −→ Fm (5.1.14)

(λ, s,x, ϕ, π) −→ hP0 (λ, s,x, ϕ, π) = (s+ λ,x, ϕ, π) . (5.1.15)

Spatial translations have as generator the vector field PA ∈ Γ (TFm) given by

PA =
∂

∂xA
. (5.1.16)

Spatial translations are recovered as flows
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hP1 : R×Fm −→ Fm (5.1.17)

(λ, s,x, ϕ, π) −→ hP1 (λ, s,x, ϕ, π) = (s, x+ λ, y, z, ϕ, π) (5.1.18)

hP2 : R×Fm −→ Fm (5.1.19)

(λ, s,x, ϕ, π) −→ hP2 (λ, s,x, ϕ, π) = (s, x, y + λ, z, ϕ, π) (5.1.20)

hP3 : R×Fm −→ Fm (5.1.21)

(λ, s,x, ϕ, π) −→ hP3 (λ, s,x, ϕ, π) = (s, x, y, z + λ, ϕ, π) . (5.1.22)

Spatial rotations have as generator the vector field JA ∈ Γ (TFm) given by

JA = ϵABCx
B ∂

∂xC
. (5.1.23)

Spatial rotations are recovered as a flow

hJA : R×Fm −→ Fm (5.1.24)

(λ, s,x, ϕ, π) −→ hJA (λ, s,x, ϕ, π) = (s, RA(λ)x, ϕ, π) , (5.1.25)

where RA(λ) ∈ SO(3) is the A-th rotation matrix of angle λ. Details of this are
given a further in the text so it is not worth it to have them here.

Spatial dilations have as generator the vector field D ∈ Γ (TFm) given by

D = xA ∂

∂xA
+ 2ϕ

∂

∂ϕ
. (5.1.26)

Space dilations are recovered as a flow

hD : R×Fm −→ Fm (5.1.27)

(λ, s,x, ϕ, π) −→ hD (λ, s,x, ϕ, π) =
(
s, eλx, e2λϕ, π

)
. (5.1.28)
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Time dilations have as generator the vector field Q ∈ Γ (TFm) given by

Q = s
∂

∂s
− ϕ

∂

∂ϕ
. (5.1.29)

Time dilations are recovered as a flow

hQ : R×Fm −→ Fm (5.1.30)

(λ, s,x, ϕ, π) −→ hQ (λ, s,x, ϕ, π) =
(
eλs,x, e−λϕ, π

)
. (5.1.31)

Special conformal transformations have as generator the vector field SA ∈ Γ (TFm)

given by

SA = 2xAx
B ∂

∂xB
− xBx

B ∂

∂xA
− 5xAπ

∂

∂π
− xA

∂

∂ϕ
. (5.1.32)

The flow that serves as action of each special conformal transformation is

hSA : R×Fm −→ Fm (5.1.33)

(λ, s,x, ϕ, π) −→ hSA (λ, s,x, ϕ, π) =
(
s, ωA(λ) (x− иA(λ)x · x) ,ΩA(λ)

1/2ϕ,Ω1(λ)
5/2π

)
.

(5.1.34)

Where иA : R → R3 with и1(λ) = (λ, 0, 0), и2(λ) = (0, λ, 0), и3(λ) = (0, 0, λ) and
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Ω1(λ) =
(
(λx− 1)2 + (λy)2 + (λz)2

)
ω1(λ) =

(x2 + y2 + z2)

(x− λ (x2 + y2 + z2))2 + y2 + z2

(5.1.35)

Ω2(λ) =
(
(λx)2 + (λy − 1)2 + (λz)2

)
ω2(λ) =

(x2 + y2 + z2)

(y − λ (x2 + y2 + z2))2 + x2 + z2

(5.1.36)

Ω3(λ) =
(
(λx)2 + (λy)2 + (λz − 1)2

)
ω3(λ) =

(x2 + y2 + z2)

(z − λ (x2 + y2 + z2))2 + x2 + y2
.

(5.1.37)

Remark: these are not the special conformal transformations that appear in
Carrollian electrodynamics, as can be seen in 7.1.3.

Field dilations have as generator the vector field W ∈ Γ (TFm) given by

W = ϕ
∂

∂ϕ
+ π

∂

∂π
. (5.1.38)

The symmetries associated to this generator are recovered as a flow

hW : R×Fm −→ Fm (5.1.39)

(λ, s,x, ϕ, π) −→ hW (λ, s,x, ϕ, π) =
(
s,x, eλϕ, eλπ

)
. (5.1.40)

The remaining symmetry has as generator the vector field Yabcd ∈ Γ (TFm), where
a, b, c, d ∈ N0 are natural numbers. This acts adding powers of space coordinates
and scalar field ϕ to the canonical momentum π. These generators are given by

Yabcd = xaybzcϕd ∂

∂π
. (5.1.41)

Symmetry transformations for each of them are recovered as a flow
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hYabcd : R×Fm −→ Fm (5.1.42)

(λ, s,x, ϕ, π) −→ hYabcd (λ, s,x, ϕ, π) = hYabcd
(
s,x, ϕ, π + λxaybzcϕd

)
.

(5.1.43)

This kind of transformation also appears in the Carrollian limits of both Maxwell
and ModMax theories and will be fully explained then.

It must be noted that although Carrollian boosts were not found by employment
of this method it is a symmetry of this limit and has generators KA ∈ Γ (TFm)

given by

KA = xA
∂

∂s
. (5.1.44)

With transformations written in terms of flow

hKA : R×Fm −→ Fm (5.1.45)

(λ, s,x, ϕ, π) −→ hKA (λ, s,x, ϕ, π) = (s+ λxA,x, ϕ, π) . (5.1.46)

Furthermore, the infinite-dimensional extension of this is also a symmetry of this
limit with generators Tabc ∈ Γ (TFm) given by

Tabc = xaybzc
∂

∂s
. (5.1.47)

Where a, b, c ∈ N0 are natural numbers. Symmetry transformations of these vector
fields are given by
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hTabc : R×Fm −→ Fm (5.1.48)

(λ, s,x, ϕ, π) −→ hTabc (λ, s,x, ϕ, π) =
(
s+ λxaybzc,x, ϕ, π

)
. (5.1.49)

5.1.2 Electric limit of the scalar free field

As was previously stated, for arriving at the electric Carrollian limit of free scalar
theory it is needed to first re-scale the canonically conjugate pair (ϕ, π)

π̃ = cπ ϕ̃ =
1

c
ϕ. (5.1.50)

In so doing, we transform the action principle as follows

S
[
π̃, ϕ̃

]
=

∫
R4

d4x

[
1

2
π̃2 − c2

2
∇ϕ̃ · ∇ϕ̃

]
, (5.1.51)

so of course,

SE[π̃, ϕ̃] = lim
c→0

S
[
π̃, ϕ̃

]
=

∫
R4

d4x

[
1

2
π̃2

]
. (5.1.52)

The equations of motion in this case are π = ϕ̇ and π̇ = 0, which reproduce the
correct limit.

5.2 Electric and magnetic limits of a scalar field

with an analytic potential

If we include an analytic potential V (ϕ) =
∑
j∈J

amϕ
m it’s clear that under

redefinition of the field we must compensate the appearance of powers of c

in the series for the electric limit so we postulate
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a′m = cma m
m , (5.2.1)

where a m
m is the previous m-th coupling constant to the m-th power, c is the

speed of light and a′m is the new m-th coupling constant.

This way we can construct the electric and magnetic limit of a self-interacting
scalar field as follows

SM [π, ϕ] = −
∫
R4

d4x

[
1

2
∇ϕ · ∇ϕ+ V (ϕ)

]
(5.2.2)

SE[π, ϕ] =

∫
R4

d4x

[
1

2
π2 − V (ϕ)

]
. (5.2.3)
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Part II

Maxwell theory, symmetries and

limits
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Chapter 6

Maxwell theory

The way we usually think about Maxwell’s equations is in their standard vector
calculus form. We see them and remember our dear Griffiths Griffiths (2017), it’s
burnt into our retinas.

∇ ·B = 0 ∇×E +
∂B

∂t
= 0 (6.0.1)

∇ ·E = ρ/ε0 ∇×B − 1

c2
∂E

∂t
= µ0J , (6.0.2)

where B, E and J are R3 valued vector fields1 and ρ is a real valued function. In
this work we are mainly concerned about vacuum Maxwell equations, which have
no sources. This is ρ = 0 and J = 0, therefore

∇ ·B = 0 ∇×E +
∂B

∂t
= 0 (6.0.3)

∇ ·E = 0 ∇×B − 1

c2
∂E

∂t
= 0. (6.0.4)

6.1 Symmetries

Maxwell theory has been studied from numerous approaches and one particularly
important is that of its symmetries. Although not immediately clear from the

1In the vector calculus sense.
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equations of motion there are three symmetries involved in them:

• Poincaré symmetry both in the vacuum case and in the one with sources.

• Conformal symmetry in the vacuum case.

• Duality invariance in the vacuum case.

In what follows, the Lie point symmetry approach was used to compute these
symmetries by first solving an overdetermined system of PDEs to find those vector
fields that generate said symmetries and then using them to construct the flows
associated to them by solving for the integral curves2. Symmetries are grouped
according to natural subgroups of the total symmetry group.

We consider the fiber bundle (E , π,M), where M is the four-dimensional Minkowski
space-time and π is the projection map

π : E −→ M (6.1.1)

(t, x, y, z, E1, E2, E3, B1, B2, B3) −→ (t, x, y, z) . (6.1.2)

For simplicity the notation x = (x, y, z), E = (E1, E2, E3) and B = (B1, B2, B3)

will also be used in this work, an example of it would be writing (6.1.1) as

π : E −→ M (6.1.3)

(t,x,E,B) −→ (t,x) , (6.1.4)

which helps clean up the notation. Equations of motion define a region O ⊆ E for
which symmetry transformations are endomorphisms.

6.1.1 Lorentz

Lorentzian symmetry consists on spatial translations, time translations, space
rotations and boosts as described in section 3.2. In the following, the action of

2By following this approach only the connected part to the identity can be recovered.
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this group on the electric and magnetic field is constructed. Spatial translations
have generators PA ∈ TE given by

PA =
∂

∂xA
. (6.1.5)

Let p ∈ E be a point p = (t0, x0, y0, z0, E
0
1 , E

0
2 , E

0
3 , B

0
1 , B

0
2 , B

0
3) to be used as initial

conditions for the curve γp : R −→ E such that γp(0) = p. Solving the system of
ODEs

γ̇PA
p (λ) = P

A γ
PA
p (λ)

, (6.1.6)

we find as the solution the unique curve γp that passes through the point p and
has tangent vector PA γp . We use this curve to construct the flows

hPA : R× E −→ E (6.1.7)

(λ, e) −→ hPA(λ, e) := γPA
e (λ). (6.1.8)

By doing so, the flow for each spatial translation is constructed as listed below

hP1 (λ, t, x, y, z, E1, E2, E3, B1, B2, B3) = (t, x+ λ, y, z, E1, E2, E3, B1, B2, B3)

(6.1.9)

hP2 (λ, t, x, y, z, E1, E2, E3, B1, B2, B3) = (t, x, y + λ, z, E1, E2, E3, B1, B2, B3)

(6.1.10)

hP3 (λ, t, x, y, z, E1, E2, E3, B1, B2, B3) = (t, x, y, z + λ,E1, E2, E3, B1, B2, B3) .

(6.1.11)

Time translations behave in much the same way as their spatial counterpart3.
The vector field generating this transformation is H ∈ TE
3Meaning they have no effect on the fields and they also act as an additive R-group.
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H =
1

c

∂

∂t
. (6.1.12)

The system of ordinary differential equations to solve in this case is

γ̇H
p (λ) = HγH

p (λ). (6.1.13)

This has a unique solution for initial conditions γH
p (0) = p which are used to

construct the flow as

hH : R× E −→ E (6.1.14)

(λ, e) −→ hH (λ, e) := γH
e (λ). (6.1.15)

Explicitly we have

hH (λ, t, x, y, z, E1, E2, E3, B1, B2, B3) = (t+ λ/c, x, y, z, E1, E2, E3, B1, B2, B3) .

(6.1.16)

Rotations are also a symmetry of Maxwell equations, as is implied by stating they
are Lorentz invariant. They have generators4 JA ∈ TE given by

JA = ϵABC

(
xB ∂

∂xC
+ EB ∂

∂EC
+BB ∂

∂BC

)
. (6.1.17)

The system of ordinary differential equations to solve for finding how the finite
transformation associated with each JA acts is

4Although the presentation of these symmetries has been shown from the lens of solving
differential equations, it is important to remember to infer how they act based on how the
vector looks. In this case it can be concluded both space and fields get rotated in the same way.
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γ̇JA
p (λ) = J

A γ
JA
p (λ)

. (6.1.18)

This has a unique solution with initial conditions γJA
p (0) = p, which is used to

construct the flows

hJA : R× E −→ E (6.1.19)

(λ, e) −→ hJA (λ, e) := γJA
e (λ). (6.1.20)

For the first angular momentum generator we have the action of a rotation with
respect to the x-axis

hJ1 (λ, t, x, y, z, E1, E2, E3, B1, B2, B3) =
(
t, x, y cosλ+ z sinλ, z cosλ− y sinλ,

E1, E2 cosλ+ E3 sinλ,E3 cosλ− E2 sinλ,

B1, B2 cosλ+B3 sinλ,B3 cosλ−B2 sinλ
)
.

(6.1.21)

For the second angular momentum generator we have the action of a rotation
with respect to the y-axis

hJ2 (λ, t, x, y, z, E1, E2, E3, B1, B2, B3) =
(
t, x cosλ− z sinλ, y, z cosλ+ x sinλ,

E1 cosλ− E3 sinλ,E2, E3 cosλ+ E1 sinλ,

B1 cosλ−B3 sinλ,B2, B3 cosλ+B1 sinλ
)
.

(6.1.22)

For the third angular momentum generator we have the action of a rotation with
respect to the z-axis
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hJ3 (λ, t, x, y, z, E1, E2, E3, B1, B2, B3) =
(
t, x cosλ+ y sinλ, y cosλ− x sinλ, z,

E1 cosλ+ E2 sinλ,E2 cosλ− E1 sinλ,E3,

B1 cosλ+B2 sinλ,B2 cosλ−B1 sinλ,B3

)
.

(6.1.23)

The remaining part of the Lorentz group are boosts KA ∈ TE that generate
Lorentz transformations in the total space E . These generators are given by

KA = ct
∂

∂xA
+

xA

c

∂

∂t
+ ϵABC

(
cBB ∂

∂EC
− EB

c

∂

∂BC

)
. (6.1.24)

The system of ODEs to solve in order to build the transformations that come
from the generators of boosts is

γ̇KA
p (λ) = K

A γ
KA
p (λ)

. (6.1.25)

The unique solution of this system of equations with initial conditions γKA
p (0) = p

is used to construct the flows that serve as the action of boosts

hKA : R× E −→ E (6.1.26)

(λ, e) −→ hKA (λ, e) := γKA
e (λ). (6.1.27)

Just as it was seen in a previous chapter, boosts act as hyperbolic rotations on
space-time. They act on the fields in much the same way. The flow of the first
boost is given by
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hK1 (λ, t, x, y, z, E1, E2, E3, B1, B2, B3) =
(
t coshλ+

x sinhλ

c
, x coshλ+ ct sinhλ, y, z,

E1, E2 coshλ+ cB3 sinhλ,E3 coshλ− cB3 sinhλ,

B1, B2 coshλ− E3 sinhλ

c
,B3 coshλ+

E2 sinhλ

c

)
,

(6.1.28)

the flow of the second boost is given by

hK2 (λ, t, x, y, z, E1, E2, E3, B1, B2, B3) =
(
t coshλ+

y sinhλ

c
, x, y coshλ+ ct sinhλ, z,

E1 coshλ− cB3 sinhλ,E2, E3 coshλ+ cB1 sinhλ,

B1 coshλ+
E1 sinhλ

c
,B2, B3 coshλ+

E1 sinhλ

c

)
,

(6.1.29)

and the flow of the third boost is given by

hK3 (λ, t, x, y, z, E1, E2, E3, B1, B2, B3) =
(
t coshλ+

z sinhλ

c
, x, y, z coshλ+ ct sinhλ,

E1 coshλ+ cB2 sinhλ,E2 coshλ− cB1 sinhλ,E3,

B1 coshλ− E2 sinhλ

c
,B2 coshλ+

E1 sinhλ

c
,B3

)
.

(6.1.30)

As stated previously, each transformation corresponds to a 1-parameter subgroup
with parameter λ ∈ R. The action of these transformations can be characterized
by defining endomorphisms

hX
λ : E −→ E (6.1.31)

e −→ hX (λ, e). (6.1.32)
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For any generator X and real number λ. Composition of such functions forms a
group and, in this particular case, an action of the Poincaré group ISO (3, 1).

6.1.1.1 Space-time restriction

A representation of the Poincaré group ISO (3, 1) is recovered by taking the
projection of all endomorphisms defined in the previous section, with

hPA
λ = π ◦ hPA

λ (6.1.33)

hH
λ = π ◦ hH

λ (6.1.34)

hJA
λ = π ◦ hJA

λ (6.1.35)

hKA
λ = π ◦ hKA

λ , (6.1.36)

where the generators of space-time symmetries can be obtained from the
pushforward of the projection map

PA = π∗PA =
∂

∂xA
(6.1.37)

H = π∗H =
1

c

∂

∂t
(6.1.38)

JA = π∗JA = ϵABCx
A ∂

∂xC
(6.1.39)

KA = π∗KA = ct
∂

∂xA
+

xA

c

∂

∂t
. (6.1.40)

This procedure will be used to take the space-time restriction of symmetries found
in Carrollian limits.

6.1.2 Conformal

Space-time dilations are also a symmetry of Maxwell equations without sources,
much in the same way as in the wave equation case. Space-time dilations have
generator D ∈ TE given by
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D = xA ∂

∂xA
+ t

∂

∂t
. (6.1.41)

The system of ODEs we need to solve to construct how space-time dilations act is

γ̇D
p (λ) = DγD

p (λ). (6.1.42)

This has unique solution with initial conditions γD
p (0) = p which is used to

construct the flow

hD : R× E −→ E (6.1.43)

(λ, e) −→ hD (λ, e) := γD
e (λ). (6.1.44)

Explicitly, space-time dilations are given by5

hD (λ, t, x, y, z, E1, E2, E3, B1, B2, B3) =
(
eλt, eλx, eλy, eλz, E1, E2, E3, B1, B2, B3

)
(6.1.45)

Field dilations are also a symmetry of Maxwell’s equations, with generator W ∈ TE
given by

W = EA ∂

∂EA
+BA ∂

∂BA
. (6.1.46)

5This is a point where it would be useful to remind you, dear reader, we are only recovering the
connected part to the identity.
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The system of ODEs we need to solve to construct how space-time dilations act is

γ̇p (λ) = Wγp(λ). (6.1.47)

This has unique solution with initial conditions γW
p (0) = p which is used to

construct the flow

hW (λ, t, x, y, z, E1, E2, E3, B1, B2, B3) =
(
t, x, y, z, eλE1, e

λE2, e
λE3, e

λB1, e
λB2, e

λB3

)
.

(6.1.48)

Special conformal transformations were also found to be a symmetry of Maxwell’s
equations but are not presented here because their explicit form is quite
complicated and showing them would not serve advance any understanding on
the subject.

6.1.3 Duality

All symmetries so far have involved space-time. However, there is one that do not
involve them. This one being duality invariance with generator U ∈ TE given by

U = −cBA ∂

∂EA
+

EA

c

∂

∂BA
. (6.1.49)

The system of ordinary differential equations to solve is

γ̇U
p (λ) = UγU

p (λ). (6.1.50)

This has unique solution with initial conditions γU
p (0) = p which is used to

construct the appropriate transformation via flow
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hU : R× E −→ E (6.1.51)

(λ, e) −→ hU (λ, e) := γU
e (λ) . (6.1.52)

Explicitly, duality transformations act as the action of the rotation group in the
(E,B) pair

hU (λ, t, x, y, z,E,B) =

(
t, x, y, z,E cosλ− cB sinλ,B cosλ+

1

c
E sinλ

)
.

(6.1.53)

6.2 Lagrangian formulation

Vacuum Maxwell equations come from two different places. Half of them are a
consequence of considering electrodynamics as a gauge theory of the group U(1)

with curvature F 6. The other half are the equations of motion derived from the
action principle over a region of Lorentzian space-time Ω ⊆ M

S[A, dA] =
1

2

∫
Ω

F ∧ ⋆F = −1

2

∫
Ω

⟨F, F ⟩ωg. (6.2.1)

6.2.1 First pair of equations: the Bianchi identity

The tensor F = dA is a real valued U(1) curvature for the connection 1-form A,
with

6Since U(1) has no group index, there’s no need to take the trace of F ∧ ⋆F .
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A =− ϕdt+ Axdx+ Aydy + Azdz (6.2.2)

F =

(
∂Ax

∂t
+

∂ϕ

∂x

)
dt ∧ dx+

(
∂Ay

∂t
+

∂ϕ

∂y

)
dt ∧ dy +

(
∂Az

∂t
+

∂ϕ

∂z

)
dt ∧ dz

(6.2.3)

+

(
∂Az

∂y
− ∂Ay

∂z

)
dy ∧ dz +

(
∂Az

∂x
− ∂Ax

∂z

)
dx ∧ dz +

(
∂Ay

∂x
− ∂Ax

∂y

)
dx ∧ dy

=− Exdt ∧ dx− Eydt ∧ dy − Ezdt ∧ dz +Bx dy ∧ dz −By dx ∧ dz +Bz dx ∧ dy

(6.2.4)

=E ∧ dt+B. (6.2.5)

Now, this has matrix elements7

Fµν =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0

 . (6.2.6)

For a U(1) theory, the Bianchi identity is expressed as

dAF =dF = ddAA = ddA = 0 (6.2.7)

=

(
∂Ey

∂x
− ∂Ex

∂y

)
dt ∧ dx ∧ dy −

(
∂Ex

∂z
− ∂Ez

∂x

)
dt ∧ dx ∧ dz

+

(
∂Ez

∂y
− ∂Ey

∂z

)
dt ∧ dy ∧ dz

+

(
∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z

)
dx ∧ dy ∧ dz +

∂Bx

∂t
dt ∧ dy ∧ dz

− ∂By

∂t
dt ∧ dx ∧ dz +

∂Bz

∂t
dt ∧ dx ∧ dy. (6.2.8)

7Taking x0 = ct.
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Using linear independence and regrouping terms we arrive at

∇ ·B = 0 ∇×E +
∂B

∂t
= 0. (6.2.9)

The second pair of Maxwell equations come from an action principle, for which it
is convenient to compute the Hodge dual F̄ = ⋆F . This is carried over by using
our previous definition as

⋆F =
1

2
ϵµ1µ2µ3µ4η

µ1ν1ηµ2ν2Fν1ν2dx
µ3 ∧ dxµ4 , (6.2.10)

this has matrix representation given by

(⋆F )µν =


0 −Bx −By −Bz

Bx 0 Ez/c −Ey/c

By −Ez/c 0 Ex/c

Bz Ey/c −Ex/c 0

 . (6.2.11)

Note that if we perform two consecutive Hodge star operations we arrive at the
same fields but multiplied by minus one.

6.2.2 Second pair of equations: Lagrangian’s EOM

While the first pair of Maxwell’s equations come from a Bianchi identity for a
U(1) theory and must be satisfied if we wish to claim to be working in a gauge
theory setting, this is not the case for the second pair, which are derived from a
particular Lagrangian. Namely

S[A,F ] =

∫
Ω

1

2
F ∧ ∗F − A ∧ ∗J. (6.2.12)
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Where Ω ⊆ M is a closed submanifold of Minkowski space-time8.

This action principle can, of course, be written in quite different ways. One that
works quite well for showing Lorentz invariance comes from using the defining
property of the Hodge dual Flanders (1963) to rewrite the previous equation. Let
ωg be the volume form associated to the Lorentzian metric g, then

S[A,F ] =

∫
Ω

−1

2
⟨F, F ⟩ωg + ⟨A, J⟩ωg, (6.2.13)

where ⟨·, ·⟩ : Ω2 (M) × Ω2 (M) → C∞ (M) is a SO(1, 3)-invariant pseudo inner
product. It is clear then that this is, by construction, Lorentz invariant.

We take the connection A to be such that the action takes an extremal value. We
then consider a one parameter family of connections

A(α) := A+ αa. (6.2.14)

This way, A(0) = A extremizes the action. We construct the functional derivative
in an analogous way as in Goldstein et al. (2002). First, we take the following
difference

S[A(α)]− S[A(0)] =
∫
Ω

−1

2
⟨F + αda, F + αda⟩ωg + ⟨A+ αa, J⟩ωg

−
∫
Ω

−1

2
⟨F, F ⟩ωg + ⟨A, J⟩ωg (6.2.15)

= α

∫
Ω

−⟨F, da⟩ωg + ⟨a, J⟩ωg −
1

2
α2

∫
Ω

⟨da, da⟩ωg. (6.2.16)

Next, we divide by α ̸= 0 and take the limit α → 0

8This requirement is not strictly necesssary and is often dropped.
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dS[A]
dα

(0) : = lim
α→0

S[A(α)]− S[A(0)]

α
(6.2.17)

=

∫
Ω

(−⟨F, da⟩+ ⟨J, a⟩)ωg (6.2.18)

=

∫
Ω

∗F ∧ da− ∗J ∧ a+ d ∗ F ∧ a− d ∗ F ∧ a (6.2.19)

=

∫
∂Ω

∗F ∧ a−
∫
Ω

(d ∗ F + ∗J) ∧ a. (6.2.20)

Now, since we are physicists we are blind to boundary terms9. Also, a is an
arbitrary 1-form so for the action to have an extremal value we need

d ∗ F + ∗J = 0. (6.2.21)

This can also be seen if we write

dS[A]
dα

(0) = −
∫
Ω

⟨d ∗ F + ∗J, a⟩ωg. (6.2.22)

The bilinear form ⟨·, ·⟩ is non-degenerate, so d ∗ F + ∗J must be 0. Notice here
the way we arrived at the equations of motion is unique, the reason for that is the
explicit presence of A in the Lagrangian. If it weren’t for it we could have carried
this procedure in two different ways, as I’ll show in the section on duality.

6.3 Hamiltonian formulation

Hamiltonian formulations of gauge theories must be done carefully because they
are constrained systems. Bianchi’s identity

9This is not exactly true. There are plenty of instances where boundary terms are relevant,
specially when considering physics of materials, which in electrodynamics is quite a relevant
area since it has direct impact on how we transmit signals.
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dAF = 0 (6.3.1)

implies that not all of configuration space is accessible and, therefore, not all
of phase space is accessible and we must deal with this. Standard procedure
is Dirac’s, who presented a systematic way of extending the Hamiltonian with
Lagrange multipliers in Dirac (2001) so that the equations of motion obtained
from the extended Hamiltonian coincide with those obtained from the Lagrangian
formulation.

Maxwell’s Hamiltonian is constructed as usual. First we use it’s Lagrangian to
build the canonical momenta

πa =
∂L
∂Ȧa

= − 1

c2
Ea. (6.3.2)

Since E = −Ȧ−∇ϕ, we can solve for Ȧ as follows

Ȧ = c2π −∇ϕ. (6.3.3)

Notice there’s no appearance of ϕ̇ in the Lagrangian, so we have the restriction
π0 = 0. In Dirac’s jargon this equation is referred to as a primary constraint. We
will come back to this equation later.

Now the Lagrangian must be expressed in terms of canonical variables. To do this
it is quite convenient to separate the Lagrangian density as follows

L = −1

4
F µνFµν (6.3.4)

=
1

2

(
E2

c2
−B2

)
(6.3.5)

=
1

2
c2πaπa −

1

4
F abFab. (6.3.6)
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With this, we get the following Hamiltonian

H =

∫
Ω

[π ·A− L] d3x (6.3.7)

H =

∫
Ω

[
1

2
c2πaπa +

1

4
F abFab − π · ∇ϕ

]
d3x. (6.3.8)

At this point it is convenient to integrate by parts the last term. The objective of
this is twofold, firstly we can see more clearly how the scalar field behaves in the
Hamiltonian and secondly it makes it easier to arrive at Gauss law. This yields

H =

∫
Ω

[
1

2
c2πaπa +

1

4
F abFab + ϕ∇ · π

]
d3x. (6.3.9)

The equations of motion for the field ϕ that come from this Hamiltonian are

ϕ̇ =
∂H
∂π0

− ∂

∂xj

(
∂H

∂(∂jπ0)

)
= 0 (6.3.10)

and

π̇0 = −∂H
∂ϕ

+
∂

∂xj

(
∂H

∂(∂jϕ)

)
(6.3.11)

= −∇ · π. (6.3.12)

Taking (6.3.10) and (6.3.12) we arrive at the usual Gauss equation

−∇ · π = 0 (6.3.13)
1

c2
∇ ·E = 0. (6.3.14)

But equation (6.3.10) can’t be right since it implies there’s no time variation for
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the scalar potential. This inconsistency comes, as has been pointed out, from the
fact that variations are restricted by Bianchi’s identity.

The equations of motion for the vector potential are obtained next

Ȧa =
∂H
∂πa

− ∂

∂xj

(
∂H

∂(∂jπa)

)
(6.3.15)

= c2πa − ∂aϕ, (6.3.16)

this is just a restatement of the definition of the canonical momentum πa in (6.3.2).
The last equation is

π̇a = − ∂H
∂Aa

+
∂

∂xi

(
∂H

∂ (∂iAa)

)
(6.3.17)

=
∂

∂xi

(
Bk

∂

∂ (∂iAa)
ϵlmk∂lAm

)
(6.3.18)

− 1

c2
∂Ea

∂t
= − (∇×B)a . (6.3.19)

Rearranging terms we obtain the Ampere-Maxwell equation

∇×B − 1

c2
∂E

∂t
= 0. (6.3.20)

Equations (6.3.16) and (6.3.20) together with those from Bianchi’s identity form
the four equations of Maxwell’s electrodynamics. However, we must deal with the
inconsistency we encountered. As has been pointed out a number of times, we
need to use Dirac’s formalism. In Dirac’s jargon, equation π0 = 0 is a primary
constraint and equation (6.3.16) is a secondary constraint10.

To include these constraints in the formulation, the use of Lagrange multipliers is
needed. We define the extended Hamiltonian Hex as

10Known as the Gauss constraint. The requirement that this constraint is preserved in time
gives rise to the conservation of electric charge.
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Hex : = H +

∫
Ω

[
∇ · π + π0

]
d3x (6.3.21)

=

∫
Ω

[
1

2
c2πaπa +

1

4
F abFab + (ϕ+ ) ∇ · π + π0

]
d3x. (6.3.22)

Where and are Lagrangian multipliers. As Zangwill shows in Zangwill (2013),
this Hamiltonian reproduces the appropriate equations of motion and it can be
proved that these Lagrange multipliers are responsible of Gauge-fixing.
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Chapter 7

Carrollian limits

7.1 At the level of the equations of motion

The first appearance of Carrollian limits in the literature were taken directly from
the equations of motion by appropriate previous redefinition of the fields so said
limits exist1. We shall reproduce this approach here and answer the question

What are all the symmetries of these limits?

So far, all theories have two distinct limits called magnetic and electric referring
to the electromagnetic case. We shall start exploring the Carrollian magnetic
limit of Maxwell’s equations.

7.1.1 Magnetic limit

We consider vacuum Maxwell’s equations written in a slightly different fashion
which is useful for taking the Carrollian limits

∇×E +
∂B

∂t
= 0 ∇ ·E = 0 (7.1.1)

−c2∇×B +
∂E

∂t
= 0 ∇ ·B = 0. (7.1.2)

From this, it is possible to arrive at the correct limit by simply considering

1See Duval et al. (2014c), for example.
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c → 0. However, let us use Carrollian field and time reparametrizations given by
B = (C/c)Bm, E = Em and s = (cC) t, respectively.

∇×Em + C2∂Bm

∂s
= 0 ∇ ·Em = 0 (7.1.3)

(cC)

(
−∇×B +

∂Em

∂s

)
= 0 ∇ ·Bm = 0. (7.1.4)

The Ampere-Maxwell equation is multiplied by a (cC)−1 factor and the Faraday
equation by a C−2 factor. Then the limit C → ∞ is taken, arriving at the
Carrollian magnetic limit of Maxwell’s equations

∇×Bm − ∂Em

∂s
= 0 ∇ ·Em = 0 (7.1.5)

∂Bm

∂s
= 0 ∇ ·Bm = 0. (7.1.6)

These equations are known to be invariant under the flat Carrollian group,
consisting of time translations, spatial translations, spatial rotations and Carrollian
boosts.

Neither time translations nor space translations come with field transformations.
Rotations act in the same way as in every other vector field, Carrollian boosts in
the magnetic limit act as

Bm(x, s) → B′
m(x, s) = Bm(x, s− b · x) (7.1.7)

Em(x, s) → E′
m(x, s) = Em(x, s− b · x) + b×Bm(x, s− b · x). (7.1.8)

These are, however, not all symmetry transformations of this system of differential
equations.
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7.1.1.1 Symmetries of the magnetic limit

The approach taken to obtain the symmetries of this system of differential equations
is that of Lie point symmetries, which requires thinking of differential equations
as conditions taking place in a space which contains both independent variables
(s,x) and dependent variables (E,B)2. Let (Em, πm, C

3+1) be the fiber bundle
with base space C3+1 and projection map

πm : Em −→ C3+1 (7.1.9)

(s,x,E,B) −→ πm (s,x,E,B) := (s,x) , (7.1.10)

whose tangent bundle TEm is used to construct the equations of motion. The
EOM define a region of the tangent bundle that is formed by solutions of the
system. Symmetry transformations are endomorphisms on TEm that also are
endomorphisms on these regions.

The Lie point symmetry method, as described in Cantwell (2002) and summarized
and exemplified in appendix A, was used to generate the set of partial differential
equations which has as solutions the vector coefficients that generates the
symmetries of the system. These solutions were found by employment of
polynomial expansions given said system is highly overdetermined. The families
of vectors are identified as follows.

The Carrollian magnetic limit of Maxwell theory is invariant under spatial
translations, with generators PA valued in the tangent space TEm

PA =
∂

∂xA
. (7.1.11)

Each of them generates a one-parameter subgroup of transformations that can be
found by constructing the flows associated to each PA. Let γ be a curve on the
total space Em

2Where the m subscript has been dropped for simplicity when displaying formulae. This should
not be a cause of confusion since all maps and space are adequately labeled.
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γ : R −→ Em (7.1.12)

λ −→ γ(λ). (7.1.13)

For γ to be an integral curve of PA, the following system of ordinary differential
equations must be satisfied

γ̇(λ) = PA γ(λ). (7.1.14)

For each value of A we get one solution that is used to build its corresponding
flow by explicit use of the integral curves γ

hP1 : R× Em −→ Em (7.1.15)

(λ, s,x,E,B) −→ hP1 (λ, s,x,E,B) := (s, x+ λ, y, z,E,B) (7.1.16)

hP2 : R× Em −→ Em (7.1.17)

(λ, s,x,E,B) −→ hP2 (λ, s,x,E,B) := (s, x, y + λ, z,E,B) (7.1.18)

hP2 : R× Em −→ Em (7.1.19)

(λ, s,x,E,B) −→ hP3 (λ, s,x,E,B) := (s, x, y, z + λ,E,B) . (7.1.20)

These transformations can be summarized as follows

hP : R3 × Em −→ Em (7.1.21)

(λ, s,x,E,B) −→ hP (λ, s,x,E,B) := (s,x+ λ,E,B) . (7.1.22)

We see that spatial translations affect neither of the fields. This is consistent with
what we already knew from previous works3.

3And from basic field theory. Were we to find field transformations coming from finite translations,
we then would have known a mistake had taken place.
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It is also customary to write flows as endomorphisms by defining

hX
λ : Em −→ Em (7.1.23)

e −→ hX
λ (e) := hX (λ, e). (7.1.24)

Time translations are also a symmetry of this limit, with generator given by

H =
∂

∂s
. (7.1.25)

The following system of ODEs is solved to construct the appropriate transformation

γ̇ (λ) = Hγ(λ). (7.1.26)

Solving this we can use the curve γ to construct the flow

hH : R× Em −→ Em (7.1.27)

(λ, s,x,E,B) −→ hH (λ, s,x,E,B) := (s+ λ,x,E,B) . (7.1.28)

Notice in both these cases the transformations do not affect the values of the fields
but only the space-time part. That is not the case for rotations. The generators
JA of rotations in Em are

JA = ϵABC

(
xB ∂

∂xC
+ EB ∂

∂EC
+BB ∂

∂BC

)
. (7.1.29)

As usual, solving for the integral curves is a necessary step for building the
transformations



86 7.1. At the level of the equations of motion

γ̇ (λ) = JA γ(λ). (7.1.30)

The solution of this system of ODEs with initial values is used to construct the
flows. Each of them is a map

hJA : R× Em −→ Em (7.1.31)

(λ, s,x,E,B) −→ hJA (λ, s,x,E,B) , (7.1.32)

with

hJ1 (λ, s,x,E,B) :=
(
s, x, y cosλ+ z sinλ, z cosλ− y sinλ,

E1, E2 cosλ+ E3 sinλ,E3 cosλ− E2 sinλ,

B1, B2 cosλ+B3 sinλ,B3 cosλ−B2 sinλ
)
, (7.1.33)

where it is possible to identify from this a rotation of angle λ with respect to the
x-axis; the second is given by

hJ2 (λ, s,x,E,B) :=
(
s, x cosλ− z sinλ, y, z cosλ+ x sinλ,

E1 cosλ− E3 sinλ,E2, E3 cosλ+ E1 sinλ,

B1 cosλ−B3 sinλ,B2, B3 cosλ+B1 sinλ
)
, (7.1.34)

which in this case it corresponds to a rotation of an angle λ with respect to the
y-axis; the third one is given by
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hJ3 (λ, s,x,E,B) :=
(
s, x cosλ+ y sinλ, y cosλ− x sinλ, z,

E1 cosλ+ E2 sinλ,E2 cosλ− E1 sinλ,E3,

B1 cosλ+B2 sinλ,B2 cosλ−B1 sinλ,B3

)
, (7.1.35)

which, unsurprisingly, is a rotation of angle λ with respect to the z-axis. The
three spatial rotations can be summarized in the following function

hJ : SO(3)× Em −→ Em (7.1.36)

(R, s,x,E,B) −→ hJ (R, s,x,E,B) := (s, Rx, RE, RB) , (7.1.37)

where SO(3) stands there as the connected part to the identity of the orthogonal
group in three dimensions. Up until this point we already knew how the symmetries
acted on both space-time coordinates and the electric and magnetic field.

In turn, the vector fields Tabc, with a, b, c ∈ N0 are a generalization of Carrollian
boosts. For each value of a, b and c we have

Tabc = xaybzc
∂

∂s
− ϵIJK

∂xaybzc

∂xI
BJ ∂

∂EK
. (7.1.38)

Solving the system of ODEs that require Tabc to be the tangent vector to a curve
γ

γ̇ (λ) = Tabc γ(λ). (7.1.39)

We use the solutions to construct the 1-parameter subgroup of transformations
given by the flow
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hTabc : R× Em −→ Em (7.1.40)

(λ, s,x,E,B) −→ hTabc (λ, s,x,E,B) :=
(
s+ λxaybzc,x,E − λ∇

(
xaybzc

)
×B,B

)
.

(7.1.41)

Computing the successive application of hTabc
λabc

, where λabc are the parameters of
each Tabc, we get a power-series expansion4

f(x, y, z) =
∑

a,b,c∈N0

λabcx
aybzc, (7.1.42)

which means this infinite sector corresponds to an action of the additive group
(C∞ (R3) ,+). It is possible and convenient to summarize this as

hT : C∞ (R3
)
× Em −→ Em (7.1.43)

(f, s,x,E,B) −→ hT (f, s,x,E,B) := (s+ f(x, y, z),x,E −∇f ×B,B) .

(7.1.44)

This infinite-dimensional sector of the symmetry group corresponds to
supertranslations in Carrollian time s and has Carrollian boosts as a subgroup by
restricting f ∈ C∞ (R3) to be a linear function5.

Space dilations have also be found to be a symmetry of the magnetic Carrollian
limit of Maxwell theory, with TEm-valued generator D given by

D = xA ∂

∂xA
+BA ∂

∂BA
. (7.1.45)

The system of ODEs to solve is the following

4Assuming convergence because why wouldn’t we.
5Notice with this the function responsible for the symmetry becomes f(x, y, z) = b1x+b2y+b3z =
b · x for b ∈ R3 and ∇f = b, which completely recovers the known symmetry transformation of
magnetic Carrollian electrodynamics under Carrollian boosts.
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γ̇ (λ) = Dγ(λ). (7.1.46)

Using the solution to this, flow hD is constructed

hD : R× Em −→ Em (7.1.47)

(λ, s,x,E,B) −→ hD (λ, s,x,E,B) :=
(
s, eλx,E, eλB

)
. (7.1.48)

In the same fashion, time dilations were found to be a symmetry of this limit.
Notice there’s a difference in sign in the part responsible for transforming the
magnetic field

Q = s
∂

∂s
−BA ∂

∂BA
. (7.1.49)

You may be wondering, dear reader, how to approach the problem of constructing
the associated transformation for time dilations Q. This is quite clearly a problem
we have never in our lives tried to solve before. Requiring γ to have tangent
vectors given by Q allows to construct the transformations, this is

γ̇ (λ) = Qγ(λ). (7.1.50)

Using the solutions to this system of ODEs the flows are built

hQ : R× Em −→ Em (7.1.51)

(λ, s,x,E,B) −→ hQ (λ, s,x,E,B) :=
(
eλs,x,E, e−λB

)
. (7.1.52)

Special conformal transformations are also a symmetry of this set of EOMs, with
generators SA ∈ TEm given by
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SA = 2xA

(
xB ∂

∂xB
+ s

∂

∂s

)
− xBx

B ∂

∂xA
(7.1.53)

− 4xAEJ
∂

∂EJ
+ 2xJ

(
EA

∂

∂EJ

− EJ
∂

∂EA

)
− 2s ϵAJKB

J ∂

∂EK

(7.1.54)

− 4xABJ
∂

∂BJ

+ 2xJ

(
BA

∂

∂BJ

−BJ
∂

∂BA

)
. (7.1.55)

Solving the usual set of ODEs

γ̇ (λ) = SA γ(λ), (7.1.56)

the flows are constructed. For each value of A we get a 1-parameter subgroup
represented by its corresponding flow

hSA : R× Em −→ Em (7.1.57)

(λ, s,x,E,B) −→ hSA (λ, s,x,E,B) . (7.1.58)

For simplicity in the expressions, let us define

ωx(λ) =
x2 + y2 + z2

(x− λ (x2 + y2 + z2))2 + y2 + z2
(7.1.59)

ωy(λ) =
x2 + y2 + z2

x2 + (y − λ (x2 + y2 + z2))2 + z2
(7.1.60)

ωz(λ) =
x2 + y2 + z2

x2 + y2 + (z − λ (x2 + y2 + z2))2
. (7.1.61)

For convenience, let us also define the accompanying factors
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Ωx(λ) = (λx− 1)2 + λ2
(
y2 + z2

)
(7.1.62)

Ωy(λ) = (λy − 1)2 + λ2
(
x2 + z2

)
(7.1.63)

Ωz(λ) = (λz − 1)2 + λ2
(
x2 + y2

)
. (7.1.64)

Using these factors we can write two families of matrices that characterize the
action of special conformal Carrollian transformations act on the electric and
magnetic field. The first family of matrices is TA(λ), where each one is given by

Tx(λ) = Ωx(λ)

λ
(
λx2 − 2x− λ

(
y2 + z2

))
+ 1 2λy(λx− 1) 2λz(λx− 1)

−2λy(λx− 1) λ2
(
x2 − y2 + z2

)
− 2λx+ 1 −2λ2yz

−2λz(λx− 1) −2λ2yz λ2
(
x2 + y2 − z2

)
− 2λx+ 1


(7.1.65)

Ty(λ) = Ωy(λ)

λ2
(
−x2 + y2 + z2

)
− 2λy + 1 −2λx(λy − 1) −2λ2xz

2λx(λy − 1) λ
(
−λ

(
x2 + z2

)
+ λy2 − 2y

)
+ 1 2λz(λy − 1)

−2λ2xz −2λz(λy − 1) λ2
(
x2 + y2 − z2

)
− 2λy + 1


(7.1.66)

Tz(λ) = Ωz(λ)

λ2
(
−x2 + y2 + z2

)
− 2λz + 1 −2λ2xy −2λx(λz − 1)

−2λ2xy λ2
(
x2 − y2 + z2

)
− 2λz + 1 −2λy(λz − 1)

2λx(λz − 1) 2λy(λz − 1) λ
(
z(λz − 2)− λ

(
x2 + y2

))
+ 1

 .

(7.1.67)

The second family of matrices is OA(λ), with

Ox(λ) = Ωx(λ)


0 2λ2sz −2λ2sy

2λ2sz 0 −2λs(λx− 1)

−2λ2sy 2λs(λx− 1) 0

 (7.1.68)

Oy(λ) = Ωy(λ)


0 −2λ2sz 2λs(λy − 1)

−2λ2sz 0 2λ2sx

−2λs(λy − 1) 2λ2sx 0

 (7.1.69)

Oz(λ) = Ωz(λ)


0 −2λs(λz − 1) 2λ2sy

2λs(λz − 1) 0 −2λ2sx

2λ2sy −2λ2sx 0

 . (7.1.70)

These matrices have two important properties that will serve in the Carrollian
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magnetic limit of ModMax theory that are relative to the R3-inner product

(TA(λ)a) · (TA(λ)b) = ΩA(λ)
4a · b (TA(λ)a) · (OA(λ)b) = 0. (7.1.71)

This way, the flow of each special conformal transformation is

hS1 (λ, s,x,E,B) = (ωx(λ)s, ωx(λ) (x− λx · x) , ωx(λ)y, ωx(λ)z,

T1(λ)E +O1(λ)B,T1(λ)B) (7.1.72)

hS2 (λ, s,x,E,B) = (ωy(λ)s, ωy(λ)x, ωy(λ) (y − λx · x) , ωy(λ)z,

T2(λ)E +O2(λ)B,T2(λ)B) (7.1.73)

hS3 (λ, s,x,E,B) = (ωz(λ)s, ωz(λ)x, ωz(λ)y, ωz(λ) (z − λx · x) ,

T3(λ)E +O3(λ)B,T3(λ)B) . (7.1.74)

From now on, the transformations concern solely the electric and magnetic field
and leave invariant the space-time part. The first of such transformations is a
field dilation with generator given by

W = EA ∂

∂EA
+BA ∂

∂BA
. (7.1.75)

The system of ODEs that determine how the transformation behaves is

γ̇ (λ) = Wγ(λ). (7.1.76)

We use the solutions to this equations to give form to the transformation via flow

hW : R× Em −→ Em (7.1.77)

(λ, s,x,E,B) −→ hW (λ, s,x,E,B) :=
(
s,x, eλE, eλB

)
. (7.1.78)
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It was seen in Maxwell theory that there was a vector field responsible for duality
transformations. Magnetic Carrollian Maxwell theory has an equivalent to that
vector field, only it does not produce rotations but rather boosts and it is given by

U = −BA ∂

∂EA
. (7.1.79)

Solving for γ in

γ̇ (λ) = Uγ(λ), (7.1.80)

we construct the transformation as a flow

hU : R× Em −→ Em (7.1.81)

(λ, s,x,E,B) −→ hU (λ, s,x,E,B) := (s,x,E − λB,B) . (7.1.82)

Notice in contrast with the Lorentzian case, here there’s no rotation in the (E,B)

pair but rather a sum. This means duality transformations are not a symmetry of
the equations of motion6.

7.1.2 Electric limit

Maxwell theory admits two Carrollian limits, one of them being the already
shown magnetic one, characterized by the magnetic field not transforming under
Carrollian boosts. The remaining one is the electric Carrollian limit, which will
be developed in what follows.

We start from the Carrollyfied Maxwell equations

6This is also a known result, duality transformations as understood in Lorentzian geometry act as
maps between the electric and magnetic limits in both Carrollian and Galilean electrodynamics
Duval et al. (2014c)
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∇×E +
∂B

∂s
= 0 ∇ ·E = 0 (7.1.83)

− 1

C2
∇×B +

∂E

∂s
= 0 ∇ ·B = 0. (7.1.84)

And simply take the limit C → ∞ so we arrive at the electric limit of Carrollian
electromagnetism

∇×E +
∂B

∂s
= 0 ∇ ·E = 0 (7.1.85)

∂E

∂s
= 0 ∇ ·B = 0. (7.1.86)

This system of equations of motion is invariant under action of the flat Carrollian
group, namely time translations, space translations, space rotations and Carrollian
boosts. Time and space translations do not change the electric and magnetic field,
rotations act in the expected and usual way and Carrollian boosts act as7

Ee(x, s) → E′
e(x, s) = Ee(x, s− b · x) (7.1.87)

Be(x, s) → B′
e(x, s) = Be(x, s− b · x)− b×Ee(x, s− b · x). (7.1.88)

7.1.2.1 Symmetries of the electric limit

This limit is expected to have the same symmetries as its magnetic counterpart
but with slightly different actions resulting from the difference in sign in one
relevant equation8. To find precisely said actions the Lie point symmetry method
was employed. Let (Ee, πe, C

3+1) be the fiber bundle with base space C3+1 and
projection map

7It was mentioned before but a good way of remembering which limit is which is thinking of
what field does not transform under boosts.

8Recall, also, that duality transformations swap between the limits.
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πe : Ee −→ C3+1 (7.1.89)

(s,x,E,B) −→ πe (s,x,E,B) := (s,x) , (7.1.90)

whose tangent bundle is used to construct the equations of motion. Just as
in the previous case, we obtained a system of highly over-determined partial
differential equations which were solved polynomially. These polynomial solutions
corresponds to components of vector fields that serve as generators of symmetries
of the equations of motion from which they were constructed.

As we already knew, space translations are a symmetry of this limit

PA =
∂

∂xA
. (7.1.91)

Solving the following system of ODEs

γ̇(λ) = PA γ(λ), (7.1.92)

the flows are constructed

hP1 : R× Ee −→ Ee (7.1.93)

(λ, s,x,E,B) −→ hP1 (λ, s,x,E,B) := (s, x+ λ, y, z,E,B) (7.1.94)

hP2 : R× Ee −→ Ee (7.1.95)

(λ, s,x,E,B) −→ hP2 (λ, s,x,E,B) := (s, x, y + λ, z,E,B) (7.1.96)

hP2 : R× Ee −→ Ee (7.1.97)

(λ, s,x,E,B) −→ hP3 (λ, s,x,E,B) := (s, x, y, z + λ,E,B) , (7.1.98)

which can be written in a more compact way as
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hP : R3 × Ee −→ Ee (7.1.99)

(λ, s,x,E,B) −→ hP (λ, s,x,E,B) := (s,x+ λ,E,B) . (7.1.100)

The time translations generator H ∈ TEe is the same as in the magnetic limit

H =
∂

∂s
. (7.1.101)

That means the system of ODEs to solve is the same

γ̇ (λ) = Hγ(λ), (7.1.102)

and the flow constructed from its solutions are also the same

hH : R× Ee −→ Ee (7.1.103)

(λ, s,x,E,B) −→ hH (λ, s,x,E,B) := (s+ λ,x,E,B) . (7.1.104)

This is also the case for all three generators of rotations JA ∈ TEe, which has to
serve as a consistency check. For had this not been the case, there would have
been at least one vector field9 that would have transformed wrongly

JI = ϵIJK

(
xJ ∂

∂xK
+ EJ ∂

∂EK

+BJ ∂

∂BK

)
. (7.1.105)

The system of ordinary differential equations to solve is

9In the vector calculus sense.
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γ̇ (λ) = JA γ(λ). (7.1.106)

Solutions of this system are used to build the appropriate symmetry
transformations as flows

hJA : R× Ee −→ Ee (7.1.107)

(λ, s,x,E,B) −→ hJA (λ, s,x,E,B) , (7.1.108)

with the first being a rotation of angle λ with respect to the x-axis

hJ1 (λ, s,x,E,B) :=
(
s, x, y cosλ+ z sinλ, z cosλ− y sinλ,

E1, E2 cosλ+ E3 sinλ,E3 cosλ− E2 sinλ,

B1, B2 cosλ+B3 sinλ,B3 cosλ−B2 sinλ
)
, (7.1.109)

the second being a rotation of angle λ with respect to the y-axis

hJ2 (λ, s,x,E,B) :=
(
s, x cosλ− z sinλ, y, z cosλ+ x sinλ,

E1 cosλ− E3 sinλ,E2, E3 cosλ+ E1 sinλ,

B1 cosλ−B3 sinλ,B2, B3 cosλ+B1 sinλ
)
, (7.1.110)

and the third being a rotation of angle λ with respect to the z-axis

hJ3 (λ, s,x,E,B) :=
(
s, x cosλ+ y sinλ, y cosλ− x sinλ, z,

E1 cosλ+ E2 sinλ,E2 cosλ− E1 sinλ,E3,

B1 cosλ+B2 sinλ,B2 cosλ−B1 sinλ,B3

)
. (7.1.111)
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Perhaps it would be convenient to write them in term of rotation matrices, so let
us define the three SO(3) rotation matrices RA(λ)

R1(λ) =


1 0 0

0 cosλ − sinλ

0 sinλ cosλ

 R2(λ) =


cosλ 0 sinλ

0 1 0

− sinλ 0 cosλ

 R3(λ) =


cosλ − sinλ 0

sinλ cosλ 0

0 0 1

 ,

(7.1.112)

this allows us to write the flows hJA in a more compact way as

hJ3 (λ, s,x,E,B) = (s, RA(λ)x, RA(λ)E, RA(λ)B) . (7.1.113)

Carrollian supertranslations of the electric limit of Maxwell’s equations have a
three-parameter generator

Tabc = xaybzc
∂

∂s
+ ϵIJK

∂
(
xaybzc

)
∂xI

EJ ∂

∂BK

, (7.1.114)

with a, b, c ∈ N. The system of ODEs to solve in order to find the action of these
generators is

γ̇ (λ) = Tabc γ(λ). (7.1.115)

The flow of each Tabc is a 1-parameter transformation given by

hTabc : R× Ee −→ Ee (7.1.116)

(λ, s,x,E,B) −→ hTabc (λ, s,x,E,B) :=
(
s+ λxaybzc,x,E,B + λ∇

(
xaybzc

)
×E

)
.

(7.1.117)
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Taking the successive application of these transformations for different values of
a, b and c we get a power-series expansion of an arbitrary C∞ (R3) function

f(x, y, z) =
∑

a,b,c∈N0

λabcx
aybzc. (7.1.118)

Using this, it is possible to summarize these transformations as

hT : C∞ (R3
)
× Ee −→ Ee (7.1.119)

(f, s,x,E,B) −→ hM (f, s,x,E,B) := (s+ f(x, y, z),x,E,B +∇f ×E) .

(7.1.120)

Supertranslations in the electric limit, just as in its magnetic counterpart,
have Carrollian boosts as a subgroup which is recovered by considering only
linear C∞ (R3)-functions and the action of them yields the already-known
transformations under boosts10.

Next in line are time dilations D ∈ TEe. In contrast to the magnetic limit’s spatial
dilation, there’s a difference in sign for the magnetic field part

D = xI ∂

∂xI
−BA

∂

∂BA

. (7.1.121)

The system of ODEs to solve in order to find how this transformation act is

γ̇ (λ) = Dγ(λ). (7.1.122)

Solutions to this system of differential equations are used to construct the flow

10Same considerations as previously must be taken.
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hD : R× Ee −→ Ee (7.1.123)

(λ, s,x,E,B) −→ hD (λ, s,x,E,B) :=
(
s, eλx,E, e−λB

)
. (7.1.124)

Time dilations Q ∈ TEe also have a different sign in the magnetic field
transformation part if we compare it with its counterpart in the magnetic limit

Q = s
∂

∂s
+BA

∂

∂BA

. (7.1.125)

The system of ODEs to solve to find the symmetry transformation for time
dilations is

γ̇ (λ) = Qγ(λ). (7.1.126)

Solutions to this system are used to construct the appropriate flow

hQ : R× Ee −→ Ee (7.1.127)

(λ, s,x,E,B) −→ hQ (λ, s,x,E,B) :=
(
eλs,x,E, eλB

)
. (7.1.128)

Both spatial and time dilations correspond to actions of the multiplicative group
(R×, ·).

Special conformal transformations in the Carrollian electric limit are characterized
by vectors SA ∈ TEe given by
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SA =2xA

(
xB ∂

∂xB
+ s

∂

∂s

)
− xBx

B ∂

∂xA
(7.1.129)

− 4xAEJ
∂

∂EJ
+ 2xJ

(
EA

∂

∂EJ

− EJ
∂

∂EA

)
(7.1.130)

− 4xABJ
∂

∂BJ

+ 2xJ

(
BA

∂

∂BJ

−BJ
∂

∂BA

)
+ 2s ϵAJKE

J ∂

∂BK

. (7.1.131)

The system of ODEs to solve in order to find how these transformations act is

γ̇ (λ) = SA γ(λ). (7.1.132)

Solutions to these equations are used to construct the flows that correspond to
each special conformal transformation

hSA : R× Ee −→ Ee (7.1.133)

(λ, s,x,E,B) −→ hSA (λ, s,x,E,B) . (7.1.134)

Explicitly we have

hS1 (λ, s,x,E,B) = (ωx(λ)s, ωx(λ) (x− λx · x) , ωx(λ)y, ωx(λ)z,

T1(λ)E,T1(λ)B −O1(λ)E) (7.1.135)

hS2 (λ, s,x,E,B) = (ωy(λ)s, ωy(λ)x, ωy(λ) (y − λx · x) , ωy(λ)z,

T2(λ)E,T2(λ)B −O2(λ)E) (7.1.136)

hS3 (λ, s,x,E,B) = (ωz(λ)s, ωz(λ)x, ωz(λ)y, ωz(λ) (z − λx · x) ,

T3(λ)E,T3(λ)B −O3(λ)E) , (7.1.137)

where TA(λ) and OA(λ) were defined in the previous section. Notice there is a
sign change in how OA(λ) enters the transformation.
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7.1.3 Space-time symmetries: the algebra

Both limits have their own set of vector fields generating their symmetries which
differ only in how they transform the electric and magnetic field. By taking the
pushforward of the projection map11 we get the spatial part of said vector fields.
Recall

(πm)∗ : TEm −→ TC3+1 (πe)∗ : TEe −→ TC3+1 (7.1.138)

X −→ (πm)∗X X −→ (πe)∗X . (7.1.139)

For simplicity we write π∗ as a stand-in for the appropriate pushforward

PI = π∗PI =
∂

∂xI
(7.1.140)

H = π∗H =
∂

∂s
(7.1.141)

JI = π∗JI = ϵIJKx
J ∂

∂xK
(7.1.142)

Tnmj = π∗Tnmj = xnymzk
∂

∂s
(7.1.143)

D = π∗D = xI ∂

∂xI
(7.1.144)

Q = π∗Q = s
∂

∂s
(7.1.145)

SA = π∗SA = 2xA

(
xB ∂

∂xB
+ s

∂

∂s

)
− xBx

B ∂

∂xA
. (7.1.146)

Let V be the real vector space spanned by the vector fields defined above

V = spanR {PA, H, JA, Tabc, D,Q, SA} . (7.1.147)

With A ∈ {1, 2, 3} and a, b, c ∈ N0. The vector space V , together with
the differential-geometric commutator [·, ·] form an infinite-dimensional algebra

11Either (πm)∗ or (πe)∗ depending on whether we are working with Em or Ee, respectively.
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(V, [·, ·]). This possesses finite sub-algebra which corresponds to the Carrollian
algebra. We take

K1 = T100 = x
∂

∂s
K2 = T010 = y

∂

∂s
K3 = T001 = z

∂

∂s
. (7.1.148)

Their commutators are taken to be the differential-geometric Lie Bracket

[PA, PB] = 0 [PA, H] = 0 [PA, JB] = ϵABCJK (7.1.149)

[PA, KB] = δABH [H, JA] = 0 [H,KA] = 0 (7.1.150)

[JA, JB] = ϵABCJC [JA, KB] = ϵABCKC [KA, KB] = 0 (7.1.151)

It can be seen that this subalgebra closes and corresponds to the Carrollian Lie
algebra. This was, of course, to be expected as previous works had already proven
it. The rest of the commutator table is the following

[Tqwe, Trty] = 0 [Tnmj, Q] = Tnmj [Tnmj, H] = 0

(7.1.152)

[Tnmj, P1] = −nTn−1mj [Tnmj, P2] = −mTnm−1 j [Tnmj, P3] = −jTnm j−1

(7.1.153)

[H,D] = 0 [D,Tnmj] = (n+m+ j)Tnmj [PA, SB] = 2δAB (D +Q)

(7.1.154)

[H,SA] = 2KA [D,SI ] = SI [D,Q] = 0

(7.1.155)

[D, JA] = 0 [PA, D] = PA [SA, SB] = 0

(7.1.156)

[PA, Q] = 0 [H,Q] = H [JA, Q] = 0

(7.1.157)

[JA, SB] = ϵABCSC [Q,SA] = 0, (7.1.158)
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and the ones that were far too long to be included above

[Tnmj, S1] = (2− 2j − 2m− n)Tn+1mj + n (Tn−1m+2 j + Tn−1m j+2) (7.1.159)

[Tnmj, S2] = (2− 2j −m− 2n)Tnm+1 j +m (Tn+2m−1 j + Tnm−1 j+2) (7.1.160)

[Tnmj, S3] = (2− j − 2m− 2n)Tnm j+1 + j (Tnm+2 j−1 + Tn+2m j−1) (7.1.161)

[J1, Tnmj] = mTnm−1 j+1 − jTnm+1 j−1 (7.1.162)

[J2, Tnmj] = jTn+1m j−1 − nTn−1m j+1 (7.1.163)

[J3, Tnmj] = nTn−1m+1 j −mTn+1m−1 j. (7.1.164)

Notice the downward ladder is truncated at zero for the index values of Tnmj.
This means that the range of {n,m, j} is N3

0. However, negative values can be
included and the algebra still closes12.

This is all well and good but characterization is needed in order to be able to
properly talk about this group. We found that this has an overlap with the
Conformal Carrollian algebra of order 2. Conformal Carroll groups of order k are
vector fields X which satisfy the condition according to Duval et al. (2014a)

LX

(
g ⊗ ξ⊗k

)
= 0, (7.1.165)

where g = δABdx
A ⊗ dxB and ξ⊗k =

⊗k
n=1 ξ. The vector fields obtained above

satisfy this criterion for k = 2. We first get (7.1.165) into a readier expression to
compute

LX

(
g ⊗ ξ⊗2

)
=δAB

(
LXdx

A
)
⊗ dxB ⊗ ξ⊗2 + δABdx

A ⊗
(
LXdx

B
)
⊗ ξ⊗2

+ g ⊗ (LXξ)⊗ ξ + g ⊗ ξ ⊗ (LXξ) , (7.1.166)

which means we have to compute two different kind of terms, namely

12So far, negative exponents have been absent in the discussion because our approach excludes
them in the polynomial expansions.
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LXdx
A = d

(
dxA (X)

)
LXξ = [X, ξ] . (7.1.167)

We start by calculating for the three generators of spatial translations, for which
the Lie derivatives yields zero by virtue of one being the exterior derivative of an
exact form and the other one by having null commutator

LPI
dxA = d

(
dxA

(
∂

∂xI

))
LPI

ξ = [PI , ξ] (7.1.168)

= 0 = 0. (7.1.169)

For the generator of time translations we have the exact same picture as before.
It is worthy of mention that under our definitions H = ξ

LHdx
A = d

(
dxA (H)

)
LHξ = [H, ξ] (7.1.170)

= 0 = 0. (7.1.171)

For the generators of spatial rotations the Lie derivative of the metric g is zero as
shown in chapter 2. The commutator in this case also vanishes

LJIdx
A = d

(
dxA (JI)

)
LJIξ = [JI , ξ] (7.1.172)

= d
(
ϵIJAx

J
)

= 0 (7.1.173)

= ϵIJAdx
J . (7.1.174)

We have LJIg is zero on accounts of being the symmetrization of an antisymmetric
object, as shown before. Super-translations are in the kernel of dxA and also have
zero commutator with ξ
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LTabc
dxA = d

(
dxA

(
xaybzc

∂

∂s

))
LTabc

= [Tabc, ξ] (7.1.175)

= 0 = 0. (7.1.176)

Spatial dilations do not satisfy the criteria for being part of the Carrollian conformal
algebra of order two, as seen in the following

LDdx
A = d

(
dxA

(
xI ∂

∂xI

))
LDξ = [D, ξ] (7.1.177)

= dxA = 0. (7.1.178)

This yields LD (g ⊗ ξ⊗2) = 2g ⊗ ξ⊗2 and not zero. A quick conclusion from this
is the algebra spanned by these generators is not a subalgebra of the one we are
interested in. However, this can be compensated with the second-to-last generator

LQdx
A = d

(
dxA

(
s
∂

∂s

))
LQξ = [Q, ξ] (7.1.179)

= 0 = −ξ. (7.1.180)

This yields LQ (g ⊗ ξ⊗2) = −2g ⊗ ξ⊗2 and also not zero13. Therefore, it is not
a member of the conformal Carrollian algebra. On their own, neither D nor Q

constitute members of this algebra. However, their sum Y = D + Q is since
LY (g ⊗ ξ⊗2) = LQ+D (g ⊗ ξ⊗2) = (LD + LQ) (g ⊗ ξ⊗2) = 0.

Although we have been calling them special conformal transformations, it was at
this point we found out exactly which kind of special conformal transformations
they are, namely of level k = 2. We check it satisfies the criteria as follows

13Note had we chosen k = 0 this would have satisfied the criteria.
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LSA
dxI = d

(
dxI

(
2xA

(
xB ∂

∂xB
+ s

∂

∂s

)
− xBx

B ∂

∂xA

))
LSA

ξ = [SA, ξ]

(7.1.181)

= 2xIdxA + 2xAdx
I − 2δIAxBdx

B = −2xAξ.

(7.1.182)

Using this we get LSA
g = 4xAg and LSA

(g ⊗ ξ⊗2) = 0. This is only possible since
we chose k = 2. Whether there are more vectors in the conformal Carrollian
algebra with k = 2 is beyond the scope of the present work.

In general, for (7.1.165) to be satisfied it is needed that

LXg = Ωg LXξ = −Ω

k
ξ. (7.1.183)

Let X = XA ∂

∂xA
+Xs ∂

∂s
, then

LXξ = [X, ξ] (7.1.184)

= −∂XA

∂s

∂

∂xA
− ∂Xs

∂s

∂

∂s
. (7.1.185)

It follows
∂XA

∂s
= 0. LXdx

B = d
(
dxB (X)

)
= d

(
RB
)
, then

LXg = δBC

[(
LXdx

B
)
⊗ dxC + dxB ⊗

(
LXdx

C
)]

(7.1.186)

= δBC

[
∂XB

∂xA
dxA ⊗ dxC +

∂XC

∂xA
dxB ⊗ dxA

]
(7.1.187)

=

(
∂XA

∂xB
+

∂XB

∂xA

)
dxA ⊗ dxB. (7.1.188)

Putting this together we get
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∂XA

∂xB
+

∂XB

∂xA
− k δAB

∂Xs

∂s
= 0. (7.1.189)

By taking the time derivative of this expression we conclude Xs is at most linear
in time s.

7.1.4 Space-time symmetries: the finite transformations

The restriction to the space-time symmetry transformations of each limit is done by
taking the projection map πm or πe for the magnetic and electric case, respectively.
For any X ∈ V and λ ∈ R the map hX

λ is a spatio-temporal symmetry of these
limits. A notorious simplification appears for CSCT after doing this, namely

hS : R3 × C3+1 −→ C3+1 (7.1.190)

(λ, s,x) −→ hS (λ, s,x) , (7.1.191)

where

hS (λ, s,x) :=

(
x · x s

(x− λ x · x) · (x− λ x · x)
,

x · x (x− λ x · x)
(x− λ x · x) · (x− λ x · x)

)
.

(7.1.192)

7.2 At the level of the Hamiltonian

The Hamiltonian approach is natural in both Galilean and Carroll geometries
since they both carry a choice of time given by the clock form θ and the vector
field ξ, respectively. These choices give us a canonical Hamiltonian foliation to
work with.

Gauge theories have two pairs of equations of motion, one coming from a
Lagrangian density L and one from a Bianchi identity
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dAF = 0. (7.2.1)

Because of this, Hamiltonian descriptions of gauge theories rely on Lagrange
multipliers in order to account for the fact that not the entirety of variations
of canonical variables in phase space is independent. An explicit choice of such
Lagrange multipliers corresponds to a gauge fixing, as shown by Dirac in Dirac
(2001).

The Hamiltonian description of Maxwell theory was used in Henneaux and Salgado-
Rebolledo (2021) to obtain both Carrollian limits of electrodynamics. They also
showed it works for gauge theories of the Yang-Mills type. Hamiltonian descriptions
of electrodynamics are also discussed in classical textbooks such as Jackson (1999)
and Zangwill (2013).

Direct canonical analysis yields the energy function

E =
1

2

(
c2πaπa +

1

2
FabF

ab

)
, (7.2.2)

where πa :=
∂L

∂(∂tAa)
. The Lagrange multiplier At∂aπ

a to ensure charge

conservation is added to construct the Hamiltonian

H =

∫
V

(
1

2
c2πaπa +

1

4
FabF

ab − At∂aπ
a

)
d3x. (7.2.3)

Notice that this does not require a full space-time metric but only a spatial metric,
used for both FabF

ab and the integration measure. Said spatial measure can
always be obtained from the restriction of the Lorentzian one to space by choosing
time in accordance to ξ.



110 7.2. At the level of the Hamiltonian

7.2.1 Magnetic limit

The magnetic limit is directly obtained by taking the limit c → 0 in (7.2.3). This
yields

HM =

∫
V

(
1

4
FabF

ab − At∂aπ
a

)
d3x. (7.2.4)

Hamilton’s equation of motion combined with Bianchi’s identity yield the correct
magnetic limit for Maxwell’s electrodynamics described previously.

7.2.2 Electric limit

The electric limit is obtained from (7.2.3) after field reparametrization

Aa → cAa At → cAt πa → 1

c
πa, (7.2.5)

and then taking the limit c → 0. Obtaining the electric Hamiltonian

HE =

∫
V

(
1

2
πaπ

a − At∂aπ
a

)
d3x. (7.2.6)

Hamilton’s equation of motion combined with Bianchi’s identity yield the correct
electric limit for Maxwell’s electrodynamics described previously.
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Chapter 8

ModMax theory

8.1 Lagrangian formulation

Modified Maxwell theory, or ModMax for short, is the unique non-linear theory
of electromagnetism that has the same symmetries as Maxwell. That is, it is a
Lorentz-invariant, conformal and duality invariant in vacuum, U(1)-gauge field
theory. It is defined by two pairs of equations, the first being the Bianchi identity

dF = 0, (8.1.1)

which in its vector calculus form corresponds to the pair

∇ ·B = 0 ∇×E +
∂B

∂t
= 0. (8.1.2)

The second pair of equations of ModMax theory comes from its Lagrangian, which
is formulated in terms of two Lorentz invariant quantities1 built using both the
U(1) curvature F and its Hodge dual F̄ = ⋆F and are as follows

1The use of the word scalar was avoided here since only S is one. P is a pseudo-scalar.
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S = −1

4
F µνFµν P = −1

4
F̄ µνFµν (8.1.3)

=
1

2

(
E2

c2
−B2

)
=

1

c
B ·E. (8.1.4)

With this, the Lagrangian of Maxwell free theory can be written quite simply as

L = S. (8.1.5)

In turn, ModMax theory is a 1-parameter family of Lagrangians given by

Lγ : = cosh γ S + sinh γ
√
S2 + P 2 (8.1.6)

=
1

2
cosh γ

(
E2

c2
−B2

)
+ sinh γ

√
1

4

(
E2

c2
−B2

)2

+
1

c2
(E ·B)2, (8.1.7)

where γ ∈ R+
0 is a positive number to ensure that the energy has a lower bound

in the quantum case, and the functions cosh and sinh were chosen to ensure dual
invariance, as will be seen later. From this definition we can note that Maxwell
theory is recovered when γ = 0 is chosen.

So far in this work I have refused to derive the EOM in term of coordinates. At
this point, however, proceeding in that fashion can prove be a little more effort
than it’s worth.

The equations of motion coming from the ModMax Lagrangian are Banerjee and
Mehra (2022)
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0 =∂µ

[
∂Lγ

∂Fµν

]
=∂µ

[
∂Lγ

∂S

∂S

∂Fµν

+
∂Lγ

∂P

∂P

∂Fµν

]
=∂µ

[
cosh γ F µν + sinh γ

S F µν + P F̄ µν

√
S2 + P 2

]
(8.1.8)

=cosh γ ∂µF
µν + sinh γ

∂µ
(
S F µν + P F̄ µν

)√
S2 + P 2

S2 + P 2

− sinh γ

(
S F µν + P F̄ µν

)
(S2 + P 2)

−1/2
(S∂µS + P∂µP )

S2 + P 2

=cosh γ ∂µF
µν + sinh γ

(S2 + P 2)
(
S∂µF

µν + F µν∂µS + P∂µF̄
µν + F̄ µν∂µP

)
(S2 + P 2)3/2

− sinh γ
S2∂µS F µν + P 2∂µP F̄ µν + SP∂µP F µν − SP∂µS F̄ µν

(S2 + P 2)3/2

=cosh γ∂µF
µν + sinh γ

(S3 + SP 2) ∂µF
µν + (P 3 + PS2) ∂µF̄

µν

(S2 + P 2)3/2

+ sinh γ
S2F̄ µν∂µP + P 2F µν∂µS − SP

(
∂µP F µν + ∂µS F̄ µν

)
(S2 + P 2)3/2

=cosh γ∂µF
µν + sinh γ

[
S∂µF

µν + P∂µF̄
µν

√
S2 + P 2

−
(
S2F̄ µν − SPF µν

)
∂µP +

(
P 2F µν − SPF̄ µν

)
∂µS

(S2 + P 2)3/2

]
. (8.1.9)

Where we have included some detailed calculations for future reference. While
having the EOM written as in (8.1.9) will be the crucial to taking the Carrollian
limits, it is useful to have them written in a slightly different way. To achieve this
we refer to (8.1.8) and note that it has the shape of an exterior derivative of some
form G. Our objective will be to find said G. First we rearrange the equation for
it

∂µ

[(
cosh γ + sinh γ

S√
S2 + P 2

)
F µν + sinh γ

P√
S2 + P 2

F̄ µν

]
= 0. (8.1.10)
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Remark:

∂S

∂Fµν

= −1

2
F µν ∂P

∂Fµν

= −1

2
F̄ µν . (8.1.11)

Equation (8.1.10) can be rewritten in terms of differential forms by using properties
of the Levi-Civita symbol as

d ⋆ G = 0, (8.1.12)

where G is a 2-form given by

G =

(
cosh γ + sinh γ

S√
S2 + P 2

)
F + sinh γ

P√
S2 + P 2

⋆ F. (8.1.13)

With this, ModMax equations of motion correspond to the pair

dF = 0 d ⋆ G = 0, (8.1.14)

which is quite reminiscing of Maxwell’s equations written in differential forms.
Writing them in this fashion is useful for quite different purposes, one of them
being finding their conserved charges.

This also suggest the presence of duality invariance, which is the case. ModMax
being duality invariant means it satisfies the Gaillard-Zumino criterion, first
presented in Gaillard and Zumino (1981). In other words we have

(⋆G)µν G
µν = (⋆F )µν F

µν , (8.1.15)

so duality transformations
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(
G′

µν

(⋆F )′µν

)
=

(
cos θ sin θ

− sin θ cos θ

)(
Gµν

(⋆F )µν

)
(8.1.16)

=

(
Gµν cos θ + (⋆F )µν sin θ

(⋆F )µν cos θ −Gµν sin θ

)
(8.1.17)

leave ModMax invariant. Conformal invariance can be checked by noting the
stress energy tensor of the theory is traceless.

8.2 Hamiltonian formulation

In terms of Hamiltonian formulation, we do not have Hamiltonian formulation.2

In spite of not having been able to construct a proper Hamiltonian, we can build
the energy density function in terms of the electric and magnetic fields. We start
with the canonical momenta

πa = − 1

c2
cosh γ E − 1

2c2
sinh γ

[
E2

c2
−B2

]
E + 2 [E ·B]B√

1

4

(
E2

c2
−B2

)2

+
1

c2
(E ·B)2

(8.2.1)

And, as should be the case, the canonical momentum π0 associated to the scalar
potential is π0 = 0. With this, we can construct the energy density of the theory3

in the usual way

H =

∫
Ω

[
Ȧ · π − L

]
d3x (8.2.2)

2Even though ModMax was constructed from its energy density function, we do not have its
Hamiltonian formulation, for it requires us to be able to solve the time derivatives of the
connection in terms of their canonical momenta. This task has proven difficult given the
non-linear aspects of the theory.

3I need to emphasize this is not the Hamiltonian as it would need to be a function of phase
space. If the expression we arrive at were to be written in term of canonical variables then it
would be the Hamiltonian. Not before.
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Here it is possible to exploit the fact that E = −Ȧ−∇ϕ to write

H =

∫
Ω

[−E · π −∇ϕ · π − L] d3x (8.2.3)

=

∫  1

c2
cosh γ E2 +

1

2c2
sinh γ

[
E2

c2
−B2

]
E2 + 2 [E ·B]2√

1

4

(
E2

c2
−B2

)2

+
1

c2
(E ·B)2

−∇ϕ · π − L

 d3x (8.2.4)

=

∫ 12 cosh γ

(
E2

c2
+B2

)
+

1

4
sinh γ

(
E2

c2
−B2

)(
E2

c2
+B2

)
√

1

4

(
E2

c2
−B2

)2

+
1

c2
(E ·B)2

−∇ϕ · π

 d3x (8.2.5)

Integrating by parts the last addend in the previous expression we arrive at the
energy function

H =

∫ 12 cosh γ

(
E2

c2
+B2

)

+
1

4
sinh γ

(
E2

c2
−B2

)(
E2

c2
+B2

)
√

1

4

(
E2

c2
−B2

)2

+
1

c2
(E ·B)2

+ ϕ∇ · π

 d3x. (8.2.6)
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Although not a complete Hamiltonian formulation4, this expression will still be
useful in a following section to construct a Hamiltonian formulation of both the
electric and magnetic Carrollian limit of ModMax theory.

4And I cannot stress this enough, since we do not have an explicit solution for the canonical
momenta π this is not written in canonical variables and, therefore, is not the Hamiltonian.
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Chapter 9

Carrollian limits

9.1 At the level of the equations of motion

From vacuum ModMax electrodynamics it is possible to construct two
nonequivalent limits which are Carroll-covariant, namely the so-called electric and
magnetic limit.

9.1.1 Electric limit

For the electric limit we re-scale Ee = E, s = (cC) t and Be = (cC)B in
Maxwell’s equations, then take the limit C → ∞.

∇×Ee +
∂Be

∂s
= 0 ∇ ·Be = 0 (9.1.1)

(cosh γ + sinh γ)
∂Ee

∂s
= 0 (cosh γ + sinh γ)∇ ·Ee = 0. (9.1.2)

This electric limit is equivalent to its Maxwell counterpart and proves to be Carroll
invariant, with transformations under boosts given by:

Ee(x, s) → E′
e(x, s) = Ee(x, s− b · x) (9.1.3)

Be(x, s) → B′
e(x, s) = Be(x, s− b · x)− b×Ee(x, s− b · x). (9.1.4)
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When the limit γ → 0 is taken, the linear theory is recovered1. Therefore the
symmetries of the electric Carrollian limit of ModMax are the same as the ones
found for the electric Carrollian limit of Maxwell theory.

9.1.2 Magnetic limit

The magnetic limit is obtained from re-scaling Em = E, Bm = (C/c)B and
s = (cC) t in Maxwell’s equations and then taking the limit C → ∞.

∂Bm

∂s
= 0 (9.1.5)

∇ ·Bm = 0 (9.1.6)

e−γ

(
∇×Bm − ∂Em

∂s

)
− 2 sinh γ

Bm · ∂Em

∂s
B2

m

Bm = 0 (9.1.7)

e−γ ∇ ·Em + 2 sinh γ (Bm · ∇)
Bm ·Em

B2
m

= 0. (9.1.8)

In contrast with the electric limit, this one has surviving non-linear terms in both
equations coming from the Lagrangian. Equation (9.1.7) can be manipulated in
such a way as to eliminate its non-linear contribution, while the non-linear term
remains in (9.1.8). Indeed, if we take the dot product with the magnetic field Bm,

e−γ

(
∇×Bm − ∂Em

∂s

)
·Bm − 2 sinh γBm · ∂Em

∂s
= 0 (9.1.9)

−eγBm · ∂Em

∂s
= 0. (9.1.10)

Notice that if we combine this with (9.1.5) we arrive at

∂

∂s
(Em ·Bm) =

∂Pm

∂s
= 0, (9.1.11)

1Although in this particular case taking the limit seems irrelevant, when coupling the theory to
matter the ModMax case will contain a γ-dependent vacuum permittivity and permeability in
contrast to its electric Carrollian Maxwell counterpart.
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where Pm is the magnetic Carrollian version of the Lorentz invariant P . This
means Pm is constant in time. We have found a non-trivial magnetic Carrollian
limit of ModMax theory and delve now into the subject of obtaining and analyzing
its symmetries. This is eased by noticing it is possible to use the results presented
in section 7.1.1.1. Both equation (9.1.7) and (9.1.8) can be rearranged in such a
way as to map them into the shape of the magnetic Carrollian limit of Maxwell
theory2. This is achieved as follows

e−γ∇×Bm − ∂

∂s

(
e−γEm + 2 sinh γ

Bm ·Em

B2
m

Bm

)
= 0 (9.1.12)

∇ ·
(
e−γEm + 2 sinh γ

Bm ·Em

B2
m

Bm

)
= 0. (9.1.13)

Notice all non-linear contributions are acting as a modification to the electric field
Em and only appear in the pair of equations coming from the Lagrangian, as
there is no dependence on the electric field in the remaining pair. Therefore we
define

E = Em + 2eγ sinh γ
Bm ·Em

B2
m

Bm B = Bm, (9.1.14)

which is invertible, with inverse given by

Em = E− 2e−γ sinh γ
E ·B
B2

B Bm = B. (9.1.15)

By performing this transformation, ModMax’s Carrollian magnetic limit can be
written in the same way as Maxwell’s

2Remark: while it is true that there exists a bijection between the magnetic Carrollian limit of
ModMax theory and that of Maxwell theory, they are not equivalent. This is because there are
γ-dependent solutions to the magnetic Carrollian limit of ModMax
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∂B

∂s
= 0 ∇ ·B = 0 (9.1.16)

∇×B− ∂E

∂s
= 0 ∇ · E = 0. (9.1.17)

The symmetries of these equations were obtained in a previous chapter and can
be used to deduce how the fields E and B transform by using the transformations
for E and B. We shall start from the transformations that are most difficult to
construct, this is

hP : R3 × Em −→ Em (9.1.18)

(λ, s,x,E,B) −→ hP (λ, s,x,E,B) := (s,x+ λ,E,B) . (9.1.19)

We have B′ = B′ = B = B and the same can be done for the electric field since
neither of them transforms. And the second most difficult one, time translations

hH : R× Em −→ Em (9.1.20)

(λ, s,x,E,B) −→ hH (λ, s,x,E,B) := (s+ λ,x,E,B) . (9.1.21)

Just by the same logic as in the previous case, we have E′ = E and B′ = B.

For rotations it is convenient to consider the general transformation

hJ : SO(3)× Em −→ Em (9.1.22)

(R, s,x,E,B) −→ hJ (R, s,x,E,B) := (s, Rx, RE, RB) . (9.1.23)

This transformation is used to derive how the electric and magnetic field transform
under rotations in the Carrollian magnetic limit of ModMax3

3Not surprisingly, in the same way as in Maxwell or all the other cases.
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E′ = E′ − 2e−γ sinh γ
E′ ·B′

B′ ·B′B
′ B′ = B′ (9.1.24)

= RE− 2e−γ sinh γ
(RE)T RB

(RB)T RB
RB = RB (9.1.25)

= R

(
E− 2e−γ sinh γ

E ·B
B2

B

)
= RB (9.1.26)

= RE. (9.1.27)

Super translations are an action of the (C∞ (R3) ,+) additive group with action
given by

hM : C∞ (R3
)
× Em −→ Em (9.1.28)

(f, s,x,E,B) −→ hM (f, s,x,E,B) := (s+ f(x, y, z),x,E−∇f ×B,B) .

(9.1.29)

We have already proven that the magnetic field not transforming implies the
magnetic field not transforming. Curiously enough, the electric field transforms in
the same way as in the Carrollian magnetic limit of Maxwell theory

E′ = E′ − 2e−γ sinh γ
E′ ·B′

B′2 B′ (9.1.30)

= E−∇f ×B− 2e−γ sinh γ
(E−∇f ×B) ·B

B2
B (9.1.31)

= E− 2e−γ sinh γ
E ·B
B2

B−∇f ×B (9.1.32)

= E −∇f ×B. (9.1.33)

Space dilations correspond to the action of the multiplicative group (R×, ·), where
R× = R/{0}
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hD : R× Em −→ Em (9.1.34)

(λ, s,x,E,B) −→ hD (λ, s,x,E,B) :=
(
s, eλx,E, eλB

)
. (9.1.35)

They have the same transformation rule

E′ = E′ − 2e−γ sinh γ
E′ ·B′

B′2 B′ = B′ (9.1.36)

= E− 2e−γ sinh γ
e2λE ·B
e2λB2

= eλB (9.1.37)

= E = eλB. (9.1.38)

Time dilations correspond to the action of the multiplicative group (R×, ·), with
action given by

hQ : R× Em −→ Em (9.1.39)

(λ, s,x,E,B) −→ hQ (λ, s,x,E,B) :=
(
eλs,x,E, e−λB

)
. (9.1.40)

Time translations were expected to behave in the same but opposite way as the
spatial ones, which is indeed the case

E′ = E′ − 2e−γ sinh γ
E′ ·B′

B′2 B′ = B′ (9.1.41)

= E− 2e−γ sinh γ
e−2λE ·B
e−2λB2

= e−λB (9.1.42)

= E = e−λB. (9.1.43)

Field dilations are also an action of the multiplicative group (R×, ·) given by
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hW : R× Em −→ Em (9.1.44)

(λ, s,x,E,B) −→ hW (λ, s,x,E,B) :=
(
s,x, eλE, eλB

)
, (9.1.45)

and, of course, it implies the same transformation rule in the Carrollian magnetic
limit of ModMax

E′ = E′ − 2e−γ sinh γ
E′ ·B′

B′2 B′ (9.1.46)

= eλE− 2 sinh γ
e2λE ·B
e2λB2

eλB (9.1.47)

= eλ
(
E− 2e−γ sinh γ

E ·B
B2

B

)
(9.1.48)

= eλE. (9.1.49)

This one is an action of the additive group (R,+)

hU : R× Em −→ Em (9.1.50)

(λ, s,x,E,B) −→ hU (λ, s,x,E,B) := (s,x,E− λB,B) . (9.1.51)

It may appear at first that the transformation rule for this case is different from
its Maxwell counterpart. However, since e−2γ is a strictly positive number for any
λ ∈ R is a τ ∈ R given by λe−2γ that produces the same transformation

E′ = E′ − 2e−γ sinh γ
E′ ·B′

B′2 B′ (9.1.52)

= E− λB− 2e−γ sinh γ
E ·B
B2

B+ 2λe−γ sinh γB (9.1.53)

= E − λ
(
1− 2e−γ sinh γ

)
B (9.1.54)

= E − λe−2γB. (9.1.55)

Special conformal transformations of order two are characterized by
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hSA : R× Em −→ E (9.1.56)

(λ, s,x,E,B) −→ hSA (s,x,E,B) , (9.1.57)

with them being explicitly given by

hS1 (λ, s,x,E,B) = (ωx(λ)s, ωx(λ) (x− λx · x) , ωx(λ)y, ωx(λ)z,

T1(λ)E+O1(λ)B, T1(λ)B) (9.1.58)

hS2 (λ, s,x,E,B) = (ωy(λ)s, ωy(λ)x, ωy(λ) (y − λx · x) , ωy(λ)z,

T2(λ)E+O2(λ)B, T2(λ)B) (9.1.59)

hS3 (λ, s,x,E,B) = (ωz(λ)s, ωz(λ)x, ωz(λ)y, ωz(λ) (z − λx · x) ,

T3(λ)E+O3(λ)B, T3(λ)B) . (9.1.60)

By using the properties4 (OA(λ)a) · (TA(λ)b) = 0 and (TA(λ)a) · (TA(λ)b) =

ΩA(λ)a · b for any a, b ∈ R3 we can prove the action of them is the same as in
the Maxwell case

E′ = E′ − 2e−γ sinh γ
E′ ·B′

B′2 B′ (9.1.61)

= TA(λ)E+OA(λ)B− 2e−γ sinh γ
(TA(λ)E+OA(λ)B) · (TA(λ)B)

(TA(λ)B) · (TA(λ)B)
TA(λ)B

(9.1.62)

= TA(λ)

(
E− 2e−γ sinh γ

E ·B
B2

B

)
+OA(λ)B (9.1.63)

= TA(λ)E +OA(λ)B. (9.1.64)

When the limit γ → 0 is taken, the linear theory is recovered. Before concluding
this section, let us mention that (9.1.14) and (9.1.15) have to be considered as
duality transformations between two different theories, namely magnetic Carrollian

4Although it is not relevant to the current proof, each special conformal Carrollian transformation
of level two is an additive (R,+) group action. This means for each A ∈ {1, 2, 3} we have
OA(λ1)OA(λ2) = OA(λ1 + λ2) and TA(λ1)TA(λ2) = TA(λ1 + λ2).
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ModMax and magnetic Carrollian Maxwell. These transformations prove useful
constructing Lie point symmetries of the former but by no means trivialize the
Carrollian ModMax theory. Coupling it to matter leads to completely different
theories.

9.2 At the level of the Hamiltonian

The Hamiltonian formulation of ModMax was done in the first order formalism in
Escobar et al. (2022) in accordance to Plebanski (1970) using the Dirac method
described in Dirac (2001). This approach is no use for us, however, as it does not
yield solvable momenta and thus cannot be used to take Carrollian limits from it.

Even though we do not have an explicit expression of the ModMax Hamiltonian
written in terms of its canonical variables it is still possible for us to arrive at
Hamiltonian formulations of both magnetic and electric limits of ModMax by
working with our incomplete Hamiltonian formulation of ModMax.

This is done in two equivalent but slightly different ways in what follows. First
the Hamiltonian formulations of the limits are built by taking the Carrollian limit
of the ModMax momenta and using them to construct the action principles by
previous appropriate re-scaling of the electric and magnetic field. Afterwards,
the ultrarelativistic limit is taken in the resulting action principle as is done in
Henneaux and Salgado-Rebolledo (2021). This two-step limit is unavoidable in
the current situation as the use of the Carrollian limits of the canonical momenta
is nevertheless needed to arrive at the adequate limits of the equations of motion.
The second approach is to consider the ModMax energy function, reparametrized
according to the desired limit and then taking the limit, this yields the same result
as the previously discussed method and one arrives at the correct equations of
motion if the Carrollian limits of the canonical momenta are taken into account.

The first step in the first method is to write the Lagrangian explicitly in terms of
the connection in order to be able to find the canonical momenta
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L =cosh γ S + sinh γ
√
S2 + P 2 (9.2.1)

=
1

2
cosh γ

(
E2

c2
−B2

)
+ sinh γ

√
1

4

(
E2

c2
−B2

)2

+
1

c2
(E ·B)2 (9.2.2)

=
1

2
cosh γ

(
E2

c2
−B2

)
+ sinh γ

√
1

4

(
1

c2

(
∇ϕ+ Ȧ

)2
− (∇×A)2

)2

+
1

c2

((
∇ϕ+ Ȧ

)
· ∇ ×A

)2
.

(9.2.3)

As expected, there’s no dependence on ϕ̇, which also happened when Maxwell
theory was considered and a rigorous study of this Hamiltonian formulation would
require an analysis under Dirac’s formalism of restrictions, however, that is not
needed for the current work.

Therefore π0 :=
∂L
∂ϕ̇

= 0. The only non-zero canonical momenta are

πa =
∂L
∂Ȧa

(9.2.4)

=
1

c2
cosh γ

(
∇ϕ+ Ȧ

)a
(9.2.5)

+
1

2
sinh γ

1

c2

[
1

c2

(
∇ϕ+ Ȧ

)2
− (∇×A)2

](
∇ϕ+ Ȧ

)a
(
1

4

[
1

c2

(
∇ϕ+ Ȧ

)2
− (∇×A)2

]2
+

1

c2

[(
∇ϕ+ Ȧ

)
· ∇ ×A

]2)1/2

+
1

c2
sinh γ

[(
∇ϕ+ Ȧ

)
· ∇ ×A

]
(∇×A)a(

1

4

[
1

c2

(
∇ϕ+ Ȧ

)2
− (∇×A)2

]2
+

1

c2

[(
∇ϕ+ Ȧ

)
· ∇ ×A

]2)1/2

(9.2.6)

=− 1

c2
cosh γ E − 1

2c2
sinh γ

[
E2

c2
−B2

]
E + 2 [E ·B]B√

1

4

(
E2

c2
−B2

)2

+
1

c2
(E ·B)2

. (9.2.7)
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It may be a hell to solve for Ȧ. Fortunately, solving for Ȧ is equivalent to solving
for E. Suppose there’s an inverse function f such that

E = f (π,B) . (9.2.8)

Then Ȧ = −f (π,B) +∇ϕ. Recall that in the Maxwell case Gauss constraint
comes from the appearance of ∇ϕ in the canonical momentum as

πM =
1

c2

(
∇ϕ+ Ȧ

)
, (9.2.9)

and solving for Ȧ we get

Ȧ = c2πM −∇ϕ. (9.2.10)

So π · Ȧ = c2π2
M −π ·∇ϕ and integrating by parts the second term we get ϕ∇·πM ,

which is the Gauss constraint considering ϕ as a Lagrange multiplier.

In conclusion, we can get the Gauss constraint for ModMax in the same fashion
as in Maxwell.

9.2.1 Construction of solvable momenta

Solving for E in equation (9.2.7) is no easy task. An approach for doing so is
taking the dot product with the magnetic field B, this yields a quartic equation
for B ·E. Replacing the result in (9.2.7) we managed to reduce the dependence
on E but not to fully solve the equation.

A more manageable approach to constructing Hamiltonians for the electric and
magnetic limits of ModMax is to eliminate the terms of the definition of the
momenta which will not contribute to the limit. This is done by means of the
introduction of a dimensionless parameter Λ in the same fashion we used the
Carrollian velocity C for taking the limits.
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9.2.1.1 Electric case

The introduction of the parameter Λ for the electric case is done by field
reparametrization as follows

E = E′ B =
1

Λ
B′. (9.2.11)

Using this, the canonical momentum becomes

π = − 1

c2
cosh γ E′ − 1

2c2
sinh γ

(
E ′2

c2
− B′2

Λ2

)
E′ +

2

Λ2
(E′ ·B′)B′√

1

4

(
E ′2 − B′2

c2Λ2

)2

+
1

c2Λ2
(E′ ·B′)2

.

(9.2.12)

We take the limit Λ → ∞ to get the electrical momentum

πe = lim
Λ→∞

π (9.2.13)

= − 1

c2
eγE′ = − 1

c2
eγE. (9.2.14)

Solving for Ȧ we get

Ȧ = c2e−γπe −∇ϕ. (9.2.15)

Now we give the same treatment to the Lagrangian density
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L =
1

2
cosh γ

(
E2

c2
−B2

)
+ sinh γ

√
1

4

(
E2

c2
−B2

)2

+
1

c2
(E ·B)2 (9.2.16)

=
1

2
cosh γ

(
E2

c2
− B2

Λ2

)
+ sinh γ

√
1

4

(
E2

c2
− B2

Λ2

)2

+
1

c2Λ2
(E ·B). (9.2.17)

And we take the limit Λ → ∞

lim
Λ→∞

L =
1

2
eγE2. (9.2.18)

With this we construct the Hamiltonian

HE =

∫
Ω

[
πe · Ȧ− L

]
d3x (9.2.19)

=

∫
Ω

[
1

2
e−γπ2

e − πe · ∇ϕ

]
d3x. (9.2.20)

The Hamiltonian obtained via this procedure coincides with the one constructed
in Henneaux and Salgado-Rebolledo (2021) for the electric limit of Maxwell theory.
Therefore, the electric limit of ModMax is equivalent to Maxwell’s.

9.2.1.2 Magnetic case

For the magnetic limit we re-scale the fields following

E =
1

Λ
E′ B = B′, (9.2.21)

leading to the expression
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π = − 1

c2Λ
cosh γ E′ − 1

2c2Λ
sinh γ

(
E ′2

c2Λ2
−B′2

)
E′ + 2 (E′ ·B′)B′√

1

4

(
E ′2

c2Λ2
−B′2

)2

+
1

c2Λ2
(E′ ·B′)2

.

(9.2.22)

We wish to preserve only the highest order terms in this expression, which
corresponds to O(Λ−1). To achieve this, we need to take the following limit

πm = lim
Λ→∞

Λπ (9.2.23)

= − 1

c2
e−γE − 2

c2
sinh γ

E ·B
B2

B. (9.2.24)

The tilde was dropped because it became irrelevant at this point. Here we can
solve for E ·B by taking the dot product of equation (9.2.24) with the magnetic
field B, which yields

E ·B = −c2e−γπm ·B. (9.2.25)

Allowing us to solve for E, and therefore for Ȧ

−E = c2eγ
[
πm − 2 sinh γ

πm ·B
B2

B

]
(9.2.26)

Ȧ = c2eγ
[
πm − 2 sinh γ

πm ·B
B2

B

]
−∇ϕ. (9.2.27)

The Hamiltonian we get thanks to this is
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HM =

∫
Ω

[
πm · Ȧ− L

]
d3x (9.2.28)

=

∫
Ω

[
c2eγπ2

m − 2c2eγ sinh γ
(πm ·B)2

B2
− πm · ∇ϕ

]
d3x− L (9.2.29)

=

∫
Ω

[
c2eγπ2

m − 2c2eγ sinh γ
(πm ·B)2

B2
+ ϕ∇ · πm

]
d3x− L, (9.2.30)

where L is the ModMax Lagrangian written in terms of the canonical variables.

At this point not only is it convenient but it also is necessary to give the Lagrangian
density function the same treatment we’ve already given the momenta

L =
1

2
cosh γ

(
E2

c2
−B2

)
+ sinh γ

√
1

4

(
E2

c2
−B2

)2

+
1

c2
(E ·B)2 (9.2.31)

=
1

2
cosh γ

(
E2

Λ2c2
−B2

)
+ sinh γ

√
1

4

(
E2

Λ2c2
−B2

)2

+
1

Λ2c2
(E ·B)2.

(9.2.32)

Notice we cannot proceed by simply taking the limit c → 0 in (9.2.30). Taking
the limit Λ → ∞ in (9.2.32) here we arrive at

L = −1

2
e−γB2. (9.2.33)

Putting it all back together, we get

HM =

∫
Ω

[
c2eγπ2

m − 2c2eγ sinh γ
(πm ·B)2

B2
+ ϕ∇ · πm +

1

2
e−γB2

]
d3x. (9.2.34)

Finally, we take the limit c → 0 in accordance to Henneaux and Salgado-Rebolledo
(2021)
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HM =

∫
Ω

[
ϕ∇ · πm +

1

2
e−γB2

]
d3x. (9.2.35)

Two things I would like to remark here, first is this Hamiltonian has the same
form as the Maxwell one, second is that the non-linear character comes from the
momenta’s definition.

The equation of motion for the scalar potential is

ϕ̇ =
∂HM

∂π0
− ∂

∂xi

(
∂HM

∂ (∂iπ0)

)
= 0, (9.2.36)

and the equation for it’s conjugate momentum is

π̇0 = −∂HM

∂ϕ
+

∂

∂xi

(
∂HM

∂ (∂iϕ)

)
(9.2.37)

0 = −∇ · πm (9.2.38)

=
1

c2
e−γE +

2

c2
sinh γ (B · ∇)

B ·E
B2

(9.2.39)

=
1

c2
e−γ∇ ·E +

2

c2
sinh γ

[
(B · ∇)B ·E

B2
− B ·E

B4
(B · ∇)B2

]
. (9.2.40)

There’s a pair of equations more to be obtained from this. First we have the
equation for the vector potential A

Ȧa =
∂HM

∂πa
− ∂

∂xi

(
∂HM

∂ (∂iπa)

)
(9.2.41)

= −∂aϕ. (9.2.42)

This is the same kind of inconsistency that appears in the Maxwell case and we
must deal with it in the same fashion. But first, the final equation
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π̇a = −∂HM

∂Aa

+
∂

∂xi

(
∂HM

∂ (∂iAa)

)
(9.2.43)

− 1

c2
∂

∂t

[
e−γE + 2

E ·B
B2

B

]
=

∂

∂xi

(
e−γBk

∂

∂ (∂iAa)
ϵlmk∂lAm

)
(9.2.44)

=
∂

∂xi

(
e−γBkϵ

iak
)

(9.2.45)

− 1

c2
∂

∂t

[
e−γE + 2 sinh γ

E ·B
B2

B

]
= −e−γ (∇×B)a . (9.2.46)

Now, to have a precise match with the equations obtained directly from the EOM
in (9.1.5), (9.1.6), (9.1.7) and (9.1.8), we need to reparametrize the electric and
magnetic fields as we’ve done in all of this work

E =
c

C
Em B =

1

c
Bm. (9.2.47)

Recall we also need to consider Carrollian time s = (cC) and the magnetic
Carrollian limit of Bianchi identity

∂Bm

∂s
= 0 ∇ ·Bm = 0. (9.2.48)

Putting this all back together we obtain that equation (9.2.46) becomes

e−γ

(
∇×Bm − ∂Em

∂s

)
− 2 sinh γ

Bm · ∂Em

∂s
B2

m

Bm = 0. (9.2.49)

Notice the decision made is consistent with the basic idea that Hamiltonian
equations are equivalent to Lagrangian ones for their respective case.
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9.2.2 At the level of the Hamiltonian 2: Electric Boogaloo

While the construction shown in the previous subsection consistently leads to the
correct equations of motion, the order of limits may raise doubt of its legitimacy.
In what follows I explore an alternative method for the derivation of those
Hamiltonians.

The main idea is to use equation (8.2.6) to construct the limits directly.

9.2.2.1 Electric case

Recall we constructed the energy density function as

H =

∫
Ω

12 cosh γ

(
E2

c2
+B2

)

+
1

4
sinh γ

(
E2

c2
−B2

)(
E2

c2
+B2

)
√

1

4

(
E2

c2
−B2

)2

+
1

c2
(E ·B)2

+ ϕ∇ · π

 d3x. (9.2.50)

If this were written in terms of the canonical variables, it would only be needed
taking the limit c → 0 in this expression to achieve one of the limits. A possible
approach is to switch first to Carrollian units. We consider field reparametrization
as follows

E = cEe B =
1

cC
Be π =

1

c
πe ϕ = cϕe. (9.2.51)

With this we obtain
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H =

∫
Ω

12 cosh γ

(
E2

e −
B2

e

c2C2

)

+
1

4
sinh γ

(
E2

e −
B2

e

c2C2

)(
E2

e +
B2

e

c2C2

)
√

1

4

(
E2

e −
B2

e

c2C2

)2

+
1

c2C2
(Ee ·Be)

+ ϕe∇ · πe

 d3x, (9.2.52)

and taking the limit C → ∞ here we arrive at

HE =

∫
Ω

[
1

2
eγE2

e + ϕe∇ · πe

]
d3x. (9.2.53)

Now, to conclude this calculation we must use the definition of the electrical
momenta in (9.2.14) and reparametrize it accordingly, this is

πe = −eγEe. (9.2.54)

This allows us to write the Hamiltonian in terms of the canonical variables as
follows

HE =

∫
Ω

[
1

2
e−γπ2

e + ϕe∇ · πe

]
d3x. (9.2.55)

Notice we arrived at the same result as we previously had. This time, though, we
have the advantage of being able to call this the electric limit of the ModMax
Hamiltonian instead of a Hamiltonian constructed from the limit of the momenta.
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9.2.2.2 Magnetic case

For mere convenience, in this case I’ll use the "Λ approach" employed in the
previous section. The electric and magnetic field are reparametrized as follows

E =
1

Λ
E′ B = B′, (9.2.56)

replacing in (8.2.6) we arrive at

H =

∫ 12 cosh γ

(
E2

c2Λ2
+B2

)

+
1

4
sinh γ

(
E2

c2Λ2
−B2

)(
E2

c2Λ2
+B2

)
√

1

4

(
E2

c2Λ2
−B2

)2

+
1

c2Λ2
(E ·B)2

+ ϕ∇ · π

 d3x. (9.2.57)

Taking the limit Λ → ∞ we arrive at

HM =

∫
Ω

[
1

2
e−γB2 + ϕ∇ · πm

]
(9.2.58)

Where πm is the same as defined in equation (9.2.24). We have therefore arrived
as the same formulae as in the previous section.
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Chapter 10

Conclusión

En el presente trabajo se encontraron los ĺımites Carrollianos de ModMax (Modified
Maxwell), tanto la contracción eléctrica como la magnética. De las cuales solo la
contracción magnética posee contribuciones no-lineales no-triviales, puesto que
la contracción eléctrica difiere de Maxwell solo por un factor global. Además, se
encontró un mapa invertible entre el ĺımite Carrolliano magnético de ModMax y
aquel de Maxwell1 que surge de intercambiar los momentos canónicos asociados
al potencial vectorial entre ambas teoŕıas. Pese a esto, se espera que al incluir
materia en la formulación se generen diferencias significativas con respecto a sus
contrapartes en la teoŕıa de Maxwell al incluir materia en la formulación.

La inclusión de materia constituye una continuación natural a este trabajo y
requiere considerar qué sucede con la ecuación de continuidad para la carga
eléctrica. Junto a esto, es posible que diferentes formas de acoplar los campos a
materia lleve a resultados con dinámicas no triviales, como se ha visto en trabajos
en geometŕıas Carrollianas que incluyen interacciones entre part́ıculas.

El análisis de las simetŕıas de los ĺımites Carrollianos de Maxwell mediante el
método de simetŕıas de contacto de Lie permitió tanto verificar lo que ya se
sab́ıa: que ambos ĺımites son covariantes bajo la acción del grupo conforme
Carrolliano de nivel 2, como la obtención de resultados nuevos que complementan
esto: la construcción expĺıcita tanto de la acción de las transformaciones conformes
especiales Carrollianas de nivel 2 sobre los campos, como de la acción del
sector infinito dimensional correspondiente a supertraslaciones en el tiempo

1Véase (9.1.14).
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Carrolliano sobre los campos; la separación de las dilataciones espacio-temporales
en dilataciones espaciales y temporales; el hallazgo de simetŕıas internas que fueron
legadas por los generadores de transformaciones de dualidad. Los generadores
encontrados mediante este método fueron exponenciados para construir sus
respectivas transformaciones finitas, donde cada una corresponde a un grupo
uniparamétrico con parámetro real. Dichas transformaciones, en conjunto con el
isomorfismo entre el ĺımite Carrolliano magnético de Maxwell y el ĺımite Carrolliano
magnético de ModMax, fueron usadas para mostrar que las simetŕıas encontradas
para este ĺımite de Maxwell corresponden también a aquel de ModMax.

Debido a que el método empleado para encontrar simetŕıas emplea polinomios
cuyo orden hace crecer rápidamente los costos computacionales asociados a los
cálculos y a que en todo orden trabajado en el presente escrito se encontraron
generadores nuevos correspondientes a las supertraslaciones2, existe la posibilidad
de que existan generadores nuevos a orden superior de los polinomios. Determinar
la existencia de estos es también una continuación natural de este trabajo3.

Formulaciones Hamiltonianas fueron encontradas para ambos ĺımites mediante
dos acercamientos sutilmente distintos. El primer método se basa en construir el
Hamiltoniano a partir de los ĺımites Carrollianos de los momentos canónicos
asociados al potencial vectorial, el segundo método se basa en obtener los
respectivos ĺımites Carrollianos de la función de enerǵıa para cada caso. Estos
acercamientos indirectos fueron consecuencia de la dificultad para resolver las
ecuaciones constitutivas (9.2.6) y, notoriamente, reproducen las ecuaciones de
movimiento correctas. En esta ĺınea, la construcción de una formulación simpléctica
tanto para el ĺımite eléctrico como para el magnético puede ser interesante.

Finalmente, cabe destacar que hemos construido los ĺımites Galileanos de ModMax
y obtenido y analizado sus simetŕıas. Su no inclusión en este trabajo obedece a tres
cosas: este escrito es ya suficientemente largo, no encontramos transformaciones
conformes especiales y queremos saber por qué y no encontramos contribuciones
no-lineales no-triviales en estos ĺımites. Sin embargo, cabe destacar que estas
teoŕıas poseen también una separación del generador de dilataciones espacio-
temporales en dos y, en ambos casos, estas simetŕıas poseen acciones no triviales
sobre los campos.

2Y por consiguiente el proceso nunca truncó.
3Encontrar las soluciones a la ecuación (7.1.188) puede servir para esto.
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Chapter 11

Conclusion

In the present work, the Carrollian limits of ModMax (Modified Maxwell) were
found, both in its electric and magnetic contractions. Of which, only the
magnetic contraction possesses non-trivial, non-linear contributions. This is
because the electric contraction of ModMax differs from that of Maxwell only in
an overall factor. Furthermore, we found an invertible map1 between the magnetic
Carrollian limit of ModMax and its counterpart in Maxwell theory that comes
from interchanging the canonical momenta associated with the vector potential
between each theory. Nevertheless, it is expected that the inclusion of matter in
the formulation generates a significant difference with Carrollian Maxwell theory.

The inclusion of matter constitutes a natural continuation of this work and
requires considering what happens to the electric charge continuity equation.
Besides, there is a chance that different matter couplings yield to results with
non-trivial dynamics, as has been seen in previous works with interacting particles
in Carrollian geometries.

The symmetry analysis of the Carrollian limits of Maxwell theory, carried out
via Lie point symmetry method, allowed us to both verify something already
known: both limits are covariant under the action of the conformal Carrollian
group of level 2, as well as some new results that complement this: the explicit
construction of both the action of the special conformal Carrollian transformations
of level 2 over the fields and that of the infinite dimensional sector of this group,
corresponding to super-translations of Carrollian time; the separation of space-

1See (9.1.14)
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time dilations into space and time dilations; the internal symmetry bequeathed
by the duality symmetry generator. Each generator found via this method were
exponentiated in order to construct their corresponding finite transformations.
Said transformations, among the isomorphism between the magnetic Carrollian
limit of ModMax and the magnetic Carrollian limit of Maxwell, were used to
show that the symmetries found for Maxwell’s case are also symmetries in their
ModMax counterpart.

Since the method employed for finding the symmetries relies in polynomials whose
order rapidly increases the computational demands for the necessary computations
and that for every order used in this work new generators of super-translations were
found2, there exists the possibility that there exists new generators at higher order
of the polynomials. Determining whether they exist is also a natural continuation
of this work.

Hamiltonian formulations were found for both Carrollian limits by two slightly
different approaches. The first approach is based in constructing the Hamiltonian
by using the Carrollian limits of the canonical momenta associated to the vector
potential. The second method is based in taking the Carrollian limits of the energy
function of the theory for each case. These approaches came as a consequence
of the difficulty of solving the constitutive equation (9.2.6) and, notoriously
enough, yield the correct equations of motion. In this line, the construction of
of a symplectic formulation of both the electric and magnetic limit would be an
interesting continuation.

Finally, it is worth noting that we have also constructed the Galilean limits of
ModMax, obtained their symmetries and analyzed them. This is not included in
this work mainly for three reasons: this work is already quite long for a masters
thesis, we did not find Galilean special conformal transformations and we want
to know why, and we did not find non-trivial, non-linear contributions in these
limits. Nevertheless, it must be said that these theories also possess a separation of
space-time dilations into space dilations and time dilations, each having non-trivial
actions over the fields.

2Implying the process never truncated.
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Appendix A

Lie Point Symmetries

The work presented in Cantwell (2002) is summarized in the following.

A1 Lie point symmetries in one dimension

The Lie point symmetries method presented in Chapter eight of Cantwell (2002)
deals with finding the symmetries of differential equations written in the form

Φ [x, y, yx, . . . ] = 0. (A1.1)

Where x denotes an independent variable, y denotes the dependent variable and
yx corresponds to the derivative of y with respect to x.

When dealing with the symmetry groups of differential equations it is needed
to determine how they act on both dependent and independent variables. The
following shows how to obtain the appropriate transformations for derivatives.

A1.1 Finite construction

We consider the action of a group on the independent variable x and the dependent
variable y characterized by a parameter s
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x̃ = F [x, y, s] (A1.2)

ỹ = G[x, y, s], (A1.3)

such that when s = 0 they remain unchanged

x = F [x, y, 0] (A1.4)

y = G[x, y, 0]. (A1.5)

From this, we wish to construct how the derivative yx transform under the group
in a manner consistent with (A1.2) and (A1.3). For this, use of the following
conditions is used

dy − yxdx = 0 (A1.6)

dỹ − ỹx̃dx̃ = 0, (A1.7)

which is equivalent to asking yx =
dy

dx
and ỹx̃ =

dỹ

dx̃
. We proceed by differentiating

equations (A1.2) and (A1.3) to construct said derivative

dỹ =
∂G

∂x
dx+

∂G

∂y
dy (A1.8)

dx̃ =
∂F

∂x
dx+

∂F

∂y
dy. (A1.9)

This is replaced in (A1.7), where we solve for ỹx̃.
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ỹx̃ =
dỹ

dx̃
=

∂G

∂x
dx+

∂G

∂y
dy

∂F

∂x
dx+

∂F

∂y
dy

=

∂G

∂x
+

∂G

∂y

dy

dx
∂F

∂x
+

∂F

∂y

dy

dx

(A1.10)

=
Gx + yxGy

Fx + yxFy

. (A1.11)

Here, both numerator and denominator were divided by dx to give them the form
of total derivatives with respect to x. To simplify notation, the operator D is
defined as this total derivative

D(·) := d

dx
(·) = ∂

∂x
(·) + yx

∂

∂y
(·). (A1.12)

This way, equation (A1.11) can be simply expressed as

ỹx̃ = G{1}[x, y, yx, s] := DG (DF )−1 . (A1.13)

This describes the transformation yx takes as induced from the transformations
for x and y. In the same fashion, the transformation for yxx is constructed. We
start from the contact conditions

dyx − yxxdx = 0 (A1.14)

dỹx̃ − ỹx̃x̃dx̃ = 0, (A1.15)

which, as stated previously, stem from

yxx =
dyx
dx

ỹx̃x̃ =
dỹx̃
dx̃

. (A1.16)

The differential of the numerator in this expression can be obtained by
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differentiating equation (A1.13)

dỹx̃ =
∂G{1}

∂x
dx+

∂G{1}

∂y
dy +

∂G{1}

∂yx
dyx (A1.17)

dx̃ =
∂F

∂x
dx+

∂F

∂y
dy. (A1.18)

This is replaced in (A1.16) and we carry on exactly as before

ỹx̃x̃ =
dỹx̃
dx̃

=

∂G{1}

∂x
dx+

∂G{1}

∂y
dy +

∂G{1}

∂yx
dyx

∂F

∂x
dx+

∂F

∂y
dy

(A1.19)

=
G{1}x + yxG{1}y + yxxG{1}yx

Fx + yxFx

(A1.20)

Notice this time D has an extra term. This is because G{1} has an extra dependence
on yx and it has to be accounted in the total derivative expression

D(·) = ∂

∂x
(·) + yx

∂

∂y
(·) + yxx

∂

∂yx
(·). (A1.21)

We arrive, then, at the induced transformation of the second derivative

ỹx̃x̃ = G{2}[x, y, yx, yxx, s] := DG{1} (DF )−1 . (A1.22)

It has to be noted that this process can be carried over as long as we wish but for
the purpose of this work, this is a good place to stop.

A1.2 Infinitesimal construction

While the formulas obtained in the previous section work well to determine whether
a differential equation is invariant under the action of a certain group, it gives
us no way of obtaining said group from scratch. The purpose of the infinitesimal



152 A1. Lie point symmetries in one dimension

construction is precisely that. We start by writing the transformations up to first
order in the group parameter s

x̃ = x+ s ξ[x, y] (A1.23)

ỹ = y + s η[x, y], (A1.24)

where ξ and η are the first order coefficient of the Taylor expansion of F and G

with respect to s, respectively

ξ[x, y] =
∂F

∂s

∣∣∣∣
s=0

η[x, y] =
∂G

∂s

∣∣∣∣
s=0

. (A1.25)

The idea is to make use of this expansion to construct a system of partial differential
equations in order to solve for the symmetries. The first step in achieving so is
building the infinitesimal versions of the transformations for the derivatives. We
start with the transformation for the first derivative by replacing (A1.23) and
(A1.24) into (A1.13)

ỹx̃ =
DG

DF
(A1.26)

=
yx + sDη

1 + sDξ
(A1.27)

≈ yx + s (Dη − yxDξ) (A1.28)

= yx + s
(
ηx + (ηy − ξx) yx − ξyy

2
x

)
. (A1.29)

Therefore, the infinitesimal transformation for the first derivative is given by

ỹx̃ = yx + s η{1}[x, y, yx]. (A1.30)

The construction of the infinitesimal transformation of the second derivative
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follows suit in the same fashion1

ỹx̃x̃ =
DG{1}

DF
(A1.31)

=
yxx + sDη{1}
1 + sDξ

(A1.32)

≈yxx + s
(
Dη{1} − yxxDξ

)
(A1.33)

=yxx + s
(
ηxx + (2ηxy − ξxx) yx + (ηyy − 2ξxy) y

2
x − ξxxy

3
x

+(ηy − 2ξx) yxx − 3ηyyxyxx) (A1.34)

=yxx + sη{2}[x, y, yx, yxx]. (A1.35)

A1.3 Example of use: the symmetry group of yxx = 0

The how-to procedure of this method is better shown with a practical example.
Let us consider the case of the equation

Ψ[x, y, yx, yxx] = yxx = 0. (A1.36)

Invariance of an equation Φ[x, y, yx, yxx] = 0 under the group’s action means

Φ[x̃, ỹ, ỹx̃, ỹx̃x̃] = Φ[x, y, yx, yxx]. (A1.37)

For simplicity, we define z = (x, y, yx, yxx) so that z̃ = (x̃, ỹ, ỹx̃, ỹx̃x̃). Expanding
an equation Φ[z̃] in powers of s

Φ[z̃] = Φ[z] + s
∂Φ

∂s

∣∣∣∣
s=0

+
s2

2

∂Φ

∂s

∣∣∣∣
s=0

+ . . . (A1.38)

= Φ[z] + s
∂zi

∂s

∣∣∣∣
s=0

∂Φ

∂zi
+

s2

2

∂zi

∂s

∣∣∣∣
s=0

∂

∂zi

(
∂zj

∂s

∣∣∣∣
s=0

∂Φ

∂zj

)
+ . . . (A1.39)

1It is noteworthy to mention it’s possible to proceed ad infinitum. For our purposes, however,
this is as good a place to stop as any.
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This becomes (A1.37) if and only if

∂zi

∂s

∣∣∣∣
s=0

∂Φ

∂zi
= 0. (A1.40)

Defining the twice-extended vector

X{2} = ξ
∂

∂x
+ η

∂

∂y
+ η{1}

∂

∂yx
+ η{2}

∂

∂yxx
. (A1.41)

We can rewrite this condition as X{2}Φ = 0. If the differential equation one is
dealing with includes dependencies up to p-th derivatives then one must make
use of the p-th extended vector X{p} to implement the invariance condition

X{p} := ξ
∂

∂x
+ η

∂

∂y
+ η{1}

∂

∂yx
+ · · ·+ η{p}

∂

∂ypx
. (A1.42)

Returning to our case of study, equation (A1.36) is invariant if

LX{2}Ψ = X{2}Ψ = 0. (A1.43)

This implies η{2} = 0, which is to be expected as the second derivative should not
transform in this case

0 = η{2} (A1.44)

= ηxx + (2ηxy − ξxx) yx + (ηyy − 2ξxy) y
2
x − ξxxy

3
x. (A1.45)

The functions y, their powers and derivatives are linearly independent. So for this
condition to held true it follows all coefficients must be simultaneously zero
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ηxx = (A1.46)

2ηxy − ξxx = 0 (A1.47)

ηyy − 2ξxy = 0 (A1.48)

ξyy = 0. (A1.49)

Solving this trough regular methods is quite simple. However, the systems of
equations this method produces are, more often than not, over-determined and
polynomial expressions are used for solving them. We have

ξ = a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2 + a7x
3 + a8x

2y + a9xy
2 + a10y

3

(A1.50)

η = b1 + b2x+ b3y + b4x
2 + b5xy + b6y

2 + b7x
3 + b8x

2y + b9xy
2 + b10y

3. (A1.51)

Replacing this back into the equations we get an eight-parameter solution for
them

ξ = a1 + a2x+ a3y + a4x
2 + a5xy (A1.52)

η = b1 + b2x+ b3y + a4xy + a5y
2. (A1.53)

We use them to construct both the infinitesimal version of the transformations
that leave invariant the equation yxx = 0 by taking all parameters to be zero
except one
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a1 : x̃ = x+ s ỹ = y (A1.54)

a2 : x̃ = x+ sx ỹ = y (A1.55)

a3 : x̃ = x+ sy ỹ = y (A1.56)

a4 : x̃ = x+ sx2 ỹ = y + sxy (A1.57)

a5 : x̃ = x+ sxy ỹ = y + sy2 (A1.58)

b1 : x̃ = x ỹ = y + s (A1.59)

b2 : x̃ = x ỹ = y + sx (A1.60)

b3 : x̃ = x ỹ = y + sy. (A1.61)

And the vector fields2 that form the algebra of symmetries of the system are given
by

X = ξ
∂

∂x
+ η

∂

∂y
(A1.62)

=
(
a1 + a2x+ a3y + a4x

2 + a5xy
) ∂

∂x
+
(
b1 + b2x+ b3y + a4xy + a5y

2
) ∂

∂y
,

(A1.63)

this is an eight-dimensional real vector space A, with basis

2In their non-extended version.
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A1 =
∂

∂x
(A1.64)

A2 = x
∂

∂x
(A1.65)

A3 = y
∂

∂x
(A1.66)

A4 = x2 ∂

∂x
+ xy

∂

∂y
(A1.67)

A5 = xy
∂

∂x
+ y2

∂

∂y
(A1.68)

B1 =
∂

∂y
(A1.69)

B2 = x
∂

∂y
(A1.70)

B3 = y
∂

∂y
. (A1.71)

Their commutator table is built by simply evaluating the commutators while
understanding

∂

∂x
and

∂

∂y
as vectors in the tangent space of M = (x, y).

Each vector in this algebra corresponds to the tangent to a curve γX : R −→ M

parameterized by s and we can reconstruct it by solving the differential equation

γ̇X(s) = XγX(s). (A1.72)

Proceeding with the computation of the symmetries of yxx = 0 we calculate the
solutions of the system of ordinary differential equations for A1

γ̇A1(s) = A1 γA1 (s) (A1.73)

ẋ(s)
∂

∂x
+ ẏ(s)

∂

∂y
=

∂

∂x
. (A1.74)

Initial conditions x(0) = x0 and y(0) = y0 are imposed into the solution of this
equation. Let γX

p : R −→ M be the unique solution to equation (A1.72) with
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initial conditions γX
p (0) = p. Then we get3

γA1

(x0,y0)
(s) = (x0 + s, y0) . (A1.75)

This solution is used to construct the transformation associated to A1 by the flow

hA1 : R×M −→ M (A1.76)

(s, x, y) −→ hA1 (s, x, y) := γA1

(x,y)(s). (A1.77)

For the symmetry generated by A2 a system of ODEs is constructed for a curve
γA2 by imposing it have tangent vector A2 γA2

γ̇A2(s) = A2 γA2 (s) (A1.78)

ẋ(s)
∂

∂x
+ ẏ(s)

∂

∂y
= x(s)

∂

∂x
. (A1.79)

The unique solution to this system of ODEs with initial conditions γA2(0) = (x0, y0)

is

γA2

(x0,y0)
(s) = (esx0, y0) . (A1.80)

This solution is used to construct the finite transformation for A2

hA2 : R×M −→ M (A1.81)

(s, x, y) −→ hA2 (s, x, y) := γA2

(x,y)(s). (A1.82)

The system of ODEs to solve for the vector field A3 is

3If notation starts to feel a bit crowded I urge you, dear reader, to bear with me.

https://en.wikipedia.org/wiki/Bear
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γ̇A3(s) = A3 γA3 (s) (A1.83)

ẋ(s)
∂

∂x
+ ẏ(s)

∂

∂y
= y(s)

∂

∂x
. (A1.84)

This has a unique solution with initial conditions γA3(0) = (x0, y0) given by

γA3

(x0,y0)
(s) = (x0 + y0s, y0) . (A1.85)

The flow of this system of equations yields the transformation associated with A3

hA3 : R×M −→ M (A1.86)

(s, x, y) −→ hA3 (s, x, y) := γA3

(x,y)(s). (A1.87)

The system of ODEs to solve for finding the symmetry transformation generated
by A4 is

γ̇A4(s) = A4 γA4 (s) (A1.88)

ẋ(s)
∂

∂x
+ ẏ(s)

∂

∂y
= x(s)2

∂

∂x
+ x(s)y(s)

∂

∂y
. (A1.89)

This has unique solution with initial conditions γA4(0) = (x0, y0) given by

γA4

(x0,y0)
(s) =

(
x0

1− sx0

,
y0

1− sx0

)
. (A1.90)

Using this solution the flow that represents the action of this symmetry is
constructed as
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hA4 : R×M −→ M (A1.91)

(s, x, y) −→ hA4 (s, x, y) := γA4

(x,y)(s). (A1.92)

The system of ordinary differential equations4 to solve for the vector field A5 is

γ̇A5(s) = A5 γA5 (s) (A1.93)

ẋ(s)
∂

∂x
+ ẏ(s)

∂

∂y
= x(s)y(s)

∂

∂x
+ y(s)2

∂

∂y
. (A1.94)

The unique solution for this system with initial conditions γA5(0) = (x0, y0) is

γA5

(x0,y0)
(s) =

(
x0

1− sy0
,

y0
1− sy0

)
. (A1.95)

This is used to construct the flow

hA5 : R×M −→ M (A1.96)

(s, x, y) −→ hA5 (s, x, y) := γA5

(x,y)(s). (A1.97)

The system of ODEs to solve in the B1 case are

γ̇B1(s) = B1 γB1 (s) (A1.98)

ẋ(s)
∂

∂x
+ ẏ(s)

∂

∂y
=

∂

∂y
. (A1.99)

The unique solution to this with initial conditions γB1(0) = (x0, y0) is the curve

4I am trying (and failing) to write this in slightly different ways. I am sure at this point you get
the gist of it anyway.



A1. Lie point symmetries in one dimension 161

γB1

(x0,y0)
(s) = (x0, y0 + s) . (A1.100)

Using this to construct the symmetry transformation we were looking for via flow
we get

hB1 : R×M −→ M (A1.101)

(s, x, y) −→ hB1 (s, x, y) := γB1

(x,y)(s). (A1.102)

The system of ordinary differential equations that serve as imposition of γB2

having tangent vector B2 γB2 is

γ̇B2(s) = B2 γB2 (s) (A1.103)

ẋ(s)
∂

∂x
+ ẏ(s)

∂

∂y
= x(s)

∂

∂y
. (A1.104)

The unique solution to this system with initial conditions γB2(0) = (x0, y0) is

γB2

(x0,y0)
(s) = (x0, y0 + sx0) . (A1.105)

This is used to build the flow that represents the transformation we were looking
for

hB2 : R×M −→ M (A1.106)

(s, x, y) −→ hB2 (s, x, y) := γB2

(x,y)(s). (A1.107)

The system of ODEs to solve in this last case is
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γ̇B3(s) = B3 γB3 (s) (A1.108)

ẋ(s)
∂

∂x
+ ẏ(s)

∂

∂y
= y(s)

∂

∂s
. (A1.109)

The unique solution to this equations with initial conditions γB3(0) = (x0, y0) is

γB3

(x0,y0)
(s) = (x0, e

sy0) . (A1.110)

The symmetry transformation for B3 is constructed thusly

hB3 : R×M −→ M (A1.111)

(s, x, y) −→ hB3 (s, x, y) := γB3

(x,y)(s). (A1.112)

Each flow corresponds to a one-parameter subgroup of the symmetries of the
equation yxx = 0 and from them the total group can be reconstructed. We start
by defining the endomorphisms hX

s on M for each vector field X ∈ S

hX
s : M −→ M (A1.113)

p −→ hX
s (p) := hX(s, p). (A1.114)

Where s ∈ R is the parameter of the transformation. The group of symmetries of
the equation yxx is the set of transformations

T :=
{
hX
s

∣∣X ∈ S ∧ s ∈ R
}
, (A1.115)

with product given by composition of maps.
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The effect caused by the set of transformations hX
s ∈ T for X ∈ S and s ∈ R

can be nicely shown in graphical form in two dimensions by plotting the integral
curves of each vector field X. Graphs representing the integral curves of each
vector X ∈ S are shown below:
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-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(h) Integral curves of B3

These were constructed with the software Mathematica. Even if this may suggest
otherwise, all vector fields are complete. Colour in these graphs gives an idea of
“length” of tangent vectors at each point, with warmer colour indicating increasing
length and colder ones indicating shorter.
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A2 Lie point symmetries in multiple dimensions

Extending this method for multiple dimensions to be able to deal with both partial
derivatives and multiple dependent variables is a necessary extension for this work
and quite a natural follow-up. PDEs are treated as differential functions in the
tangent to a space (x,y), where x are independent variables and y are dependent
ones. Transformations in this formalism are guaranteed to form a group in the
same fashion as the previous case.

We start by considering the finite transformations F j[x,y, s] for independent
variables x and Gi[x,y, s] for dependent variables y, with j ∈ {1, ..., n} ⊆ N and
i ∈ {1, ...,m} ⊆ N being labels for x’s and y’s coordinates and s ∈ R being a real
valued parameter characterizing the transformations

x̃j = F j[x,y, s] (A2.1)

ỹi = Gi[x,y, s], (A2.2)

with xj = F j [x,y, 0] and yi = Gi[x,y, 0]. The approach to take in order to arrive
at a differential system of equations whose solutions are the coefficients of vector
fields generating the symmetries of a given system of PDEs is simply an extension
of simpler, previous case. Starting with the contact condition for first order partial
derivatives

dỹi − ỹiαdx̃
α = 0. (A2.3)

We expand the differentials dx̃j and dỹi using (A2.1) and (A2.2), respectively
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dx̃α = dF j dỹi = dGi (A2.4)

=
∂F j

∂xα
dxα +

∂F j

∂yβ
dyβ =

∂Gi

∂xα
dxα +

∂Gi

∂yβ
dyβ (A2.5)

=

(
∂

∂xα
+ yβα

∂

∂yβ

)
F jdxα =

(
∂

∂xα
+ yβα

∂

∂yβ

)
Gidxα (A2.6)

= (DβF
α) dxβ =

(
DβG

i
)
dxβ. (A2.7)

Replacing equations (A2.7) into (A2.3) we arrive at

(
DβG

i − ỹiαDβF
α
)
dxβ = 0. (A2.8)

Differentials dxα are linearly independent, therefore each coefficient has to be zero
on their own. On the other hand, in order for DβF

α to have an inverse it needs
to satisfy det (DβF

α) ̸= 0. Imposing this it follows that

DβG
i − ỹiαDβF

α = 0 (A2.9)(
DβG

i − ỹiαDβF
α
) (

DµF
β
)−1

= 0 (A2.10)

ỹiµ −DβG
i
(
DµF

β
)−1

= 0. (A2.11)

With this we can define the transformations of first derivatives yij in the once-
extended group as

ỹij = Gi
{j} [x,y,y1, s] := DβG

i
(
DjF

β
)−1

, (A2.12)

where y1 stands as a shorthand for first derivatives of dependent variables y.
Next step needed to arrive at a useful point for us is constructing the finite
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transformations for second derivatives5.

We start with the contact condition for them

dỹij − ỹijαdx
α = 0. (A2.13)

Replacing (A2.12) into (A2.13) we get

dỹij = dGi
{j} (A2.14)

=
∂Gi

{j}

∂xα
dxα +

∂Gi
{j}

∂yβ
dyβ +

∂Gi
{j}

∂yβµ
dyβµ (A2.15)

=

(
∂

∂xα
+ yβα

∂

∂yβ
+ yβµα

∂

∂yβµ

)
Gi

{j}dx
α (A2.16)

= DαG
i
{j}dx

α. (A2.17)

With this it is possible to define finite transformations for second derivatives by
following the same steps as before as

ỹij1j2 = Gi
{j1j2} [x,y,y1,y2, s] := DαG

i
{j1} (Dj2F

α)−1 . (A2.18)

Now we’ve got transformation rules for second derivatives we need to construct
the differential version of these transformation rules so it is possible to apply them
in the problems we are interested in. Consider the infinitesimal version of the
transformation for the independent variables x and the dependent variables y

x̃j = xj + sξj[x,y] (A2.19)

ỹi = yi + sηi[x,y], (A2.20)

5This is because the present work has examples which feature second derivatives. If that were
not the case, stopping at first derivatives would have been fine as both Maxwell and ModMax
theory are systems of first order partial differential equations.
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where j ∈ {1, . . . , n} ⊆ N and i ∈ {1, . . . ,m} ⊆ N and functions ξj and ηi are
first order terms of Taylor expansions around group parameter s of F j and Gi,
respectively

ξj[x,y] =
∂F j

∂s

∣∣∣∣
s=0

ηi[x,y] =
∂Gi

∂s

∣∣∣∣
s=0

. (A2.21)

Replacing (A2.19) and (A2.20) into (A2.12) we get

ỹij = Dβ

(
yi + sηi[x,y]

)i (
Dj

(
xβ + sξβ[x,y]

))−1 (A2.22)

=
(
yiβ + sDβη

i[x,y]
) (

δβj + sDjξ
β[x,y]

)−1

(A2.23)

≈
(
yiβ + sDβη

i[x,y]
) (

δβj − sDjξ
β[x,y]

)
(A2.24)

= yij + s
(
Djη

i[x,y]− yiβDjξ
β[x,y]

)
+O

(
s2
)
, (A2.25)

where the matrix
(
δβj + sDjξ

β[x,y]
)−1 was approximated as6 δβj − sDjξ

β[x,y]

and the last line is the result is truncated at first order in group parameter s.
With this we define the infinitesimal transformation of first derivatives

ỹij = yij + sηi{j} [x,y,y1] , (A2.26)

with y1 being a shorthand for first derivatives of dependent variables y and
functions ηi{j} defined as

ηi{j} [x,y,y1] := Djη
i[x,y]− yiβDjξ

β[x,y]. (A2.27)

Just as in the ODE case, dependence on derivatives of the same order is linear.

For second order partial derivatives the process is repeated, starting by replacing

6Which is the usual way of approximating matrices’ inverses around a small parameter at the
identity.
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(A2.19) and (A2.26) into (A2.18)

ỹij1j2 = Dα

(
yij1 + sηi{j1}[x,y,y1]

)
(Dj2 (x

α + sξα[x,y]))−1 (A2.28)

=
(
yij1α + sDαη

i
{j1} [x,y,y1]

) (
δαj2 + sDj2ξ

α[x,y]
)−1 (A2.29)

≈
(
yij1α + sDαη

i
{j1} [x,y,y1]

) (
δαj2 − sDj2ξ

α[x,y]
)

(A2.30)

= yij1j2 + s
(
Dj2η

i
{j1} [x,y,y1]− yij1αDj2ξ

α [x,y]
)
+O

(
s2
)
, (A2.31)

where the same approximations were taken as the previous case were taken. Care
must be put to consider the appropriate version of derivatives Dα to use in each
case to arrive at the correct expressions when expanding these transformation
rules7. Last expression allows us to define the infinitesimal transformation of
second derivatives as

ỹij1j2 = yij1j2 + sηi{j1j2} [x,y,y1,y2] , (A2.32)

where y2 stands as a shorthand for second derivatives of dependent variables y

and functions ηi{j1j2} are defined as

ηi{j1j2} [x,y,y1,y2] := Dj2η
i
{j1} [x,y,y1]− yij1αDj2ξ

α [x,y] . (A2.33)

This concludes the mathematical background of the method used here to obtain
symmetries8. Actual computations were generally done in Mathematica software
as solving systems of around 400 partial differential equations by hand is a really
good way of making dumb mistakes.

7Just as when dealing with one variable, derivatives Dβ can be thought as representing total
derivatives with respect to dependent variable xβ .

8If you, dear reader, were looking for an example of the multi-variable version in action I’m
happy to disappoint.
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Appendix B

Symmetries of the scalar wave

equation

This appendix serves as an expansion of chapter 5, where the symmetries of the
equations of motion for the relativistic scalar field were not included as to not
disturb the narrative. This brief chapter contains the symmetries of the wave
equation1

∇2ϕ− 1

c2
∂2ϕ

∂t2
= 0, (B.0.1)

which consists of space-time translations, space rotations, Lorentzian boosts,
space-time dilations and special conformal transformations. The symmetries of
the wave equation consist, then, of the 4-dimensional relativistic conformal group
that was introduced as a natural extension of the Poincaré group ISO (3, 1). These
symmetries were obtained via the same procedure used in the rest of this work.

1In the terminology used in the previous appendix, this equation can be written as
Φ[t, x, y, z, ϕtt, ϕxx, ϕyy, ϕzz] := ϕxx + ϕyy + ϕzz − c−2ϕtt = 0.
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B.1 Generators

Consider the total space F characterized by (t,x, ϕ), with projection map

π : F −→ M (B.1.1)

(t,x, ϕ) −→ π (t,x, ϕ) := (t,x) . (B.1.2)

Symmetry generators of equation (B.0.1) are vector fields in TF , with

H =
1

c

∂

∂t
(B.1.3)

PA =
∂

∂xA
(B.1.4)

JA = ϵABCx
B ∂

∂xC
(B.1.5)

KA =
xA

c

∂

∂t
+ ct

∂

∂xA
(B.1.6)

S0 = −2c2txA ∂

∂xA
−
(
c2t2 + x2 + y2 + z2

) ∂

∂t
+ 2c2ϕ

∂

∂ϕ
(B.1.7)

SA = 2xA

(
xB ∂

∂xB
+ t

∂

∂t

)
− xµxνηµν

∂

∂xA
− 2xA

∂

∂ϕ
(B.1.8)

D = xA ∂

∂xA
+ t

∂

∂t
(B.1.9)

W = ϕ
∂

∂ϕ
. (B.1.10)

All symmetry generators except special conformal transformations leave the scalar
field unchanged, which is the usual way one thinks of transformations of a scalar
field.

B.2 Finite transformations

The finite symmetry transformations were obtained by solving systems of ODEs
given by
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γ̇X (λ) = XγX (λ), (B.2.1)

where γ : R −→ M is a curve in the base manifold M and X ∈ TF is one of the
symmetry generators. Solutions of these system of ODEs with initial conditions
γX (0) = p for a given p ∈ M are denoted by γX

p . Each solution γX
p is unique and

is used to construct a 1-parameter subgroup of the total group by building its
associated flow

hX : R×F −→ M (B.2.2)

(λ, p) −→ hX (λ, p) := γX
p (λ), (B.2.3)

with transformations

hH (λ, t,x, ϕ) := (t+ λ/c,x, ϕ) (B.2.4)

hPA (λ, t,x, ϕ) := (t,x+ иAλ, ϕ) (B.2.5)

hJA (λ, t,x, ϕ) := (t, RA (λ)x, ϕ) (B.2.6)

hD (λ, t,x, ϕ) :=
(
eλt, eλx, ϕ

)
(B.2.7)

hSµ (λ, x, ϕ) :=
(
ωµ(λ)

(
x− иµ(λ) ⟨x, x⟩η

)
,Ωµ(λ)ϕ

)
(B.2.8)

hW (λ, t,x, ϕ) :=
(
t,x, eλϕ

)
, (B.2.9)

rotation matrices given by

R1(λ) =


1 0 0

0 cosλ − sinλ

0 sinλ cosλ

 R2(λ) =


cosλ 0 sinλ

0 1 0

− sinλ 0 cosλ

 , (B.2.10)

and
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R3(λ) =


cosλ − sinλ 0

sinλ cosλ 0

0 0 1

 , (B.2.11)

indicator functions и0(λ) = (λ, 0, 0, 0), и1(λ) = (0, λ, 0, 0), и2(λ) = (0, 0, λ, 0),
и3(λ) = (0, 0, 0, λ) and special conformal transformation related functions given
by

ωµ(λ) :=
⟨x, x⟩η〈

x− иµ(λ) ⟨x, x⟩η , x− иµ(λ) ⟨x, x⟩η
〉
η

ΩA(λ) := ⟨λx− иA(1), λx− иA(1)⟩η ,

(B.2.12)

and Ω0(λ) := (c2λt+ 1)
2 − c2λ2x2 − c2λ2y2 − c2λ2z2.

B.2.1 Restriction to the space-time part

The restriction to the space-time component of these symmetries corresponds
to the pushforward of the vector fields in the total space with respect to the
projection map π, with

H = π∗H =
1

c

∂

∂t
(B.2.13)

PA = π∗PA =
∂

∂xA
(B.2.14)

JA = π∗JA = ϵABCx
B ∂

∂xC
(B.2.15)

KA = π∗KA =
xA

c

∂

∂t
+ ct

∂

∂xA
(B.2.16)

D = π∗D = xA ∂

∂xA
+ t

∂

∂t
(B.2.17)

SA = π∗SA = 2xA

(
xB ∂

∂xB
+ t

∂

∂t

)
− xµxνηµν

∂

∂xA
. (B.2.18)

The group of symmetries is formed by flows hX
λ with product being the map
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composition and X = π∗X , which of course is also just hX
λ = π ◦ hX

λ .
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