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Resumen

Los limites Carrollianos de teorias de campos Lorentzianas se han encontrado
recientemente estudiadas, en los tltimos anos, como resultado de un renovado
interés en teorfas y geometria Carrolliana desde el lado de fisica tedrica. De ahi nace
la decisién de estudiar los limites Carrollianos de la teoria de Maxwell Modificado
(ModMax, por su escritura en inglés), que es la tnica extensiéon no-linear de la
teorfa de Maxwuell con invarianza conforme y de dualidad en el vacio. El presente
trabajo contiene tanto una derivacién de ambos limites a nivel de las ecuaciones de
movimiento como una construcciéon de una formulacién Hamiltoniana para cada
uno. Se encontré que el limite magnético tiene una contribucién no-linear no-nula a
las ecuaciones de movimiento controlada por el parametro de ModMax ~ y que esta
admite una biyeccién con el limite Carrolliano magnético de la teoria de Maxwell.
Cabe destacar que estos limites no son equivalentes pues existen configuraciones
que son solucién de uno de ellos y no asf del otro. En particular, existen soluciones
que muestran una dependencia explicita del pardmetro de ModMax . Se encontré
que el limite Carrolliano eléctrico de ModMax es equivalente al de Maxwell, siendo

carente de contribucién no-lineal.

Las simetrias de los limites Carrollianos de Maxwell fueron obtenidas empleando
el método de simetrias puntuales de Lie y se probé que constituyen también
simetrias de sus correspondientes contrapartes en los limites Carrollianos de
ModMax mediante la anteriormente mencionada biyeccién. Estas simetrias
incluyen desplazamientos finitos tanto temporales como espaciales, rotaciones
espaciales, impulsos Carrollianos, dilaciones temporales, dilaciones espaciales,
transformaciones conformes especiales Carrollianas de nivel £ = 2, siper-
traslaciones temporales, dilataciones de campo y una simetria interna que surge
como legado de la simetria de dualidad en la versién Lorentziana. Debido a
la separaciéon de las dilaciones espacio-temporales en dilaciones espaciales y
temporales, estas simetrias no caben dentro de ninguna clasificacién de grupos
conformes Carrollianos. Sin embargo, al tomar el sub-dlgebra diagonal se encontré
que esta satisface los criterios necesarios para pertenecer al dlgebra conforme

Carrolliana de nivel 2.

Keywords — Carroll, Carrollian limits, Electrodynamics, Conformal, Non-linear,

Lie point symmetries
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Abstract

Carrollian limits of Lorentzian field theories have recently found themselves studied
in the last few years as a result of renewed interest on Carrollian theories and
geometry on the theoretical part of physics. Thus the decision to study the
Carrollian limits of Modified-Maxwell (ModMax) theory, the unique conformal
and duality invariant non-linear extension of Maxwell theory, was taken. The
present work contains a derivation of these limits at the level of the equations
of motion and the construction of a Hamiltonian formulation of them. It was
found that the magnetic limit has a non-vanishing non-linear contribution to the
equations of motion controlled by the ModMax parameter v and that it admits a
bijection with the magnetic limit of Maxwell theory, however, these two are not
equivalent since there exists solutions on one side that are not solutions of the
other and, in particular, there exists solutions with explicit dependence on the
ModMax parameter v. The electric limit of ModMax was found to be equivalent

of that of Maxwell theory, having no non-linear contribution.

The symmetries of the Carrollian limits of Maxwell theory were obtained through
the use of Lie point symmetry method and are proven to also be symmetries of
the Carrollian limits of ModMax theory by use of the Maxwell-ModMax bijection.
These symmetries include time translations, space translations, Carrollian boosts,
spatial rotations, time dilations, space dilations, special conformal transformations,
field dilations, super-translations on the temporal part and an internal symmetry
that corresponds to a legacy of duality invariance of the Lorentzian theory. Because
of the separation of the space-time dilation into space and time dilations, the
resulting algebra of symmetries does not belong in any categorization of conformal
Carrollian algebras, however, by taking the diagonal sub-algebra it was found

these belong to a subset of the conformal Carrollian algebra of level 2.

Keywords — Carroll, Carrollian limits, Electrodynamics, Conformal, Non-linear,

Lie point symmetries
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Chapter 1

Introduccion

1.1 Sobre la estructura

Citando a Tolkien, no siempre resplandece lo que es oro ( ) v, en este
caso, no siempre es inmediatamente 1itil todo lo que esta escrito en este trabajo

para entender los resultados presentados.

El capitulo 3 comienza con una presentacién bdsica de geometria pseudo-
Riemanniana, que puede ser saltada si el lector ya se encuentra familiarizado con el
topico. Esto se encuentra alli en caso de que existan dudas sobre las convenciones
usadas. Luego hay una exposicion sobre el grupo de Lorentz y se sugiere que el
lector la mantenga presente con objeto de comparar con las simetrias encontradas

en la seccién destinada a Carroll.

Los siguientes capitulos estan compuestos por definiciones ttiles e importantes
de geometria Carrolliana ademés de un breve ejemplo compuesto por el limite
Carrolliano del campo escalar libre, donde se empleé el método de simetrias de

contacto de Lie por primera vez en este trabajo.

El capitulo 6 contiene una breve revision de la teoria de Maxwell, incluyendo la

derivacién de sus simetrias y su formulaciéon Lagrangiana y Hamiltoniana.

El capitulo 7 es quizd la seccién mds relevante de esta tesis, debido a que contiene
tanto la derivacién de las simetrias que aparecen también en los limites de ModMax,

asi como un anadlisis de a qué corresponden.

El capitulo 9 es la culminacién de este trabajo, pues es donde se demuestra que
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las simetrias encontradas previamente en el capitulo 6 corresponden también a
simetrias de estos limites. La formulacion Hamiltoniana de estos se construye

también aqui.

Se incluye también un apéndice que contiene lo basico del método de simetrias
de contacto de Lie y al lector se le recomienda leerlo si busca poseer un mejor

entendimiento de este trabajo.

1.2 Estado del arte

El grupo de Carroll fue encontrado por primera vez por Levi-Leblond y Bacri en
el articulo ( ), donde fueron clasificados todos los
posibles grupos cinematicos. Los requerimientos considerados para ser considerado
un grupo cinematico son poseer una nocién de causalidad, poseer espacio isotrépico,
admitir paridad y reversion temporal, y que las transformaciones inerciales
compongan un subgrupo no compacto del grupo total de transformaciones, lo que
corresponde a pedir que existan boosts. Mientras que el grupo de Poincaré posee
las transformaciones de Lorentz, que corresponden a rotaciones hiperbdlicas que
mezclan espacio y tiempo, su equivalente en Carroll transforma solo la coordenada
temporal, dejando la parte espacial invariante. Las traslaciones finitas temporales

y espaciales son también parte del grupo de Carroll.

En este articulo también se encontré que el grupo de Galileo, responsable de las
transformaciones de simetria en mecénica clésica, es también uno de los posibles
grupos cineméticos. Notoriamente, en los tltimos anos, se ha mostrado que el
grupo de Carroll admite una nocién de dualidad con este grupo, véase

( ), que ambos pueden ser tratados de forma unificada como casos
particulares de una variedad de Bargmann extendida ( )y que
existe un método para construir teorfas invariantes de Galileo a partir de teorias

invariantes de Carroll y vice-versa utilizando Lagrangianos semilla en
(2023¢).

El grupo de Carroll fue obtenido como una contraccién del dlgebra de Poincaré
al considerar un caso limite en el que la velocidad de la luz se acerca a cero, lo
que ha probado tener relevancia fisica con relacién a superficies nulas

( ) v su extensién conforme siendo isomorfa al grupo de Bondi Metzer Sachs

( ). En este contexto, aspectos Carrollianos han comenzado a ser
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explorados con relacién a holografia de espacio plano ( ) y como
modelos efectivos sobre superficies nulas en variedades Lorentzianas que admiten
movimiento aparente ( ). El movimiento en geometrias de Carroll se
pensaba en un principio imposible debido a la clara separacién causal de dicha

geometria pero se han encontrado modelos que poseen propagacion fuera de las

lineas de luz' ( ) v ha sido mostrado que particulas Carrollianas
acopladas admiten dindmica no-trivial ( ). Otra posible
aplicacion fue encontrada en ( ), donde el flujo de Gubser, que

provee de un modelo analitico para describir la dindmica de espacio-tiempo de un
plasma de gluénes y quarks producidos en colisiones de iones pesados, junto a sus
suposiciones de simetria asociadas, es argumentado surgen naturalmente como
una consecuencia de las simetrias Carrollianas de un fluido Carrolliano. Dado el
contexto de que teorias Carrollianas admiten dindamicas no-triviales, los limites
Carrollianos de p-formas, incluyendo el caso del campo escalar y el de teorias de

Yang-Mills, fueron estudiadas en ( ).

Las representaciones unitarias irreducibles de un dipolo de Carroll fueron
encontradas y clasificadas en ( ) como una
continuacién del trabajo presentado en ( ), donde la
correspondencia Carroll-fractén (que son particulas que no pueden moverse) fue
establecida. Las G-estructuras de Carroll fueron clasificadas en término de sus

torsiones intrinsecas en ( ).

Desde el lado de gravitacién, el limite Carrolliano de la acciéon de Einstein-
Hilbert fue obtenida en ( ). Las simetrias asintéticas
para teorias gravitacionales Carrollianas en (3 + 1) dimensiones, obtenidas de
contracciones ultra-relativistas (¢ — 0) eléctricas y magnéticas de relatividad
general fueron analizadas en ( ). Un principio de accién a la Cartan,

a primer orden, invariante bajo el grupo homogéneo de Carroll para gravedad

Carrolliana eléctrica fue presentada en ( ). Ha sido sugerido en
( ) que las simetrias de Carroll podrian ser relevantes para
energia oscura e inflacién. Es mds, en el articulo ( ) se sugiere

que quiza particulas Carrollianas sean un candidato a materia oscura debido a

que generan un campo gravitacional que apunta hacia fuera.

El articulo original ( ) ha recibido un aumento

'En contraposicién con los conos de luz usuales.
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significativo en su nimero de citas en la tltima década y una revision exhaustiva
de todos los trabajos relevantes va mas alla del objetivo de este trabajo. Sin
embargo, una buena revision del tépico puede ser encontrada en

( )o ( ) v las referencias que estos contienen.
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Chapter 2

Introduction

2.1 On the structure

To quote Tolkien, all that is gold does not glitter ( ), and in this case
not all that is written in this document is immediately useful for understanding

the results presented.

Chapter 1 starts with a presentation of basic stuff of pseudo-Riemannian geometry,
which can be skipped if the reader is already familiar with the subject. This is in
the place it is in case there are doubts on conventions used. Next in this chapter is
an exposition on the Lorentz group and the reader is advised to keep its contents

in mind to compare them with the symmetries obtained in the Carrollian part.

The next chapters are composed of important and useful definitions of Carrollian
geometry as well as a brief example of the Carrollian limits of the free scalar field
theory, where the Lie point symmetry method is employed for the first time in

this work.

Chapter 6 contains a brief review of Maxwell theory, including a derivation of its

symmetries, its Lagrangian description and its Hamiltonian description.

Chapter 7 is perhaps the most relevant part of this thesis, as it contains both the
derivation of the symmetries that appear also in ModMax limits and an analysis

of what they are.

Chapter 9 is the culmination of this work, where it is demonstrated that the

symmetries found in the previous chapter are also symmetries of these limits. The



6 2.2. State of the art

Hamiltonian formulation of the electric and magnetic limit of ModMax is also

constructed here.

An appendix containing the basics of the Lie point symmetry method is also
included in this document and the reader is advised to read it if a better insight

on how the work was done is desired.

2.2 State of the art

The Carroll group was first found in the paper ( )
by Levi-Leblond and Bacry in 1968. In this paper, all possible kinematic groups
were classified. The requirements for being considered a possible kinematic group
were having a notion of causality, having isotropy of space, admitting parity and
time reversal and that inertial transformations form a non-compact subgroup of
the total group of transformations, that is the requirement of having boosts as
one of the symmetries. While the Poincaré group has boosts that are hyperbolic
rotations that mix space and time, boosts in the Carroll group affect only the
time coordinate while leaving the space part unaffected. Finite space and time

translations and space rotations are also part of the Carroll group.

This paper also found the Galilean group, the symmetry group of non-relativistic
mechanics, to be one of the possible kinematic groups. Notably enough in the
last few years the Carroll group was shown to admit a notion of duality with
the Galilean group ( ) and both of them can be treated in
a unified manner as particular cases in an extended Bargmann manifold

( ) and a method for constructing Carroll invariant theories from Galilei

invariant ones was developed by the employment of seed Lagrangians in
(2023c).

The Carroll group was obtained as a contraction of the Poincaré algebra by
considering the limiting case of the speed of light going to zero, something that
has been proven to have physical significance in relation with null surfaces

( ) and its conformal extension being isomorphic to the Bondi-Metzner—Sachs
group ( ). In this context, Carrollian aspects begun to be
explored in relationship with flat space holography ( ) and
as effective models on null hyper-surfaces in a Lorentzian spacetime admitting

apparent motion ( ). Motion in Carrollian geometries was first believed
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to not be possible due to the clearly separated causal structure of this geometry

but it has been found that models with interactions admit propagation outside

the light-line’ ( ) and it has been proved that coupled Carroll
particles admit non-trivial dynamics ( ). Another possible
application was found in ( ), where Gubser flow, which provides

an analytic model for describing the spacetime dynamics of the quark-gluon plasma
produced in heavy-ion collisions, along with its associated symmetry assumptions
are argued to arise naturally as a consequence of Carrollian symmetries for a
conformal Carroll fluid. Given the context that Carrollian theories admit non-
trivial dynamics, Carrollian limits of general p-forms were studied, including the

scalar case and Yang-Mills theory in ( ).

The Unitary Irreducible Representations (UIRs) of Carroll and dipole groups were
found and classified in ( ) as a continuation of the
work presented in ( ), where the Carroll-fracton
(which are particles that cannot move) correspondence was established. Carrollian

G-structures were classified in terms of their intrinsic torsion in

From the gravity side, the Carroll limit of the Einstein-Hilbert action was
obtained in the year 2021 in the paper ( ). Asymptotic
symmetries in Carrollian gravitational theories in (3 4 1)-space-time dimensions
obtained from magnetic and electric ultrarelativistic (¢ — 0) contractions of
General Relativity were analyzed in ( ). A Cartan-like first-order

homogeneous-Carroll-invariant action principle for electric Carrollian gravity was

presented in ( ). It was suggested in a 2022 paper
( ) that Carrollian symmetries might be relevant for dark energy and
inflation, furthermore, a recent 2024 paper ( ) suggests that

Carroll particles may be a candidate for dark matter as they generate an outward

gravitational field.

The original paper ( ) has received a boost in the
number of citations during the last decade and a thorough revision of all relevant
works is beyond the scope of this work. Nevertheless, a good overview of the
subject can be found in ( ) or ( ) and the

references therein.

Tn contrast to the usual light-cone.
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Chapter 3

Poincare group, algebra and induced

structure

2

“ Education had been easy. Learning things had been harder.
Hogfather, Terry Pratchett ( ).

Relativity principles are a common theme of study in physics, mostly thanks to
Albert Einstein’s work on general relativity but have existed for quite a long time

as they arise from a very simple yet important question:
How do we compare measurements between observers?

If an observer makes a prediction about a system we must be able to reliably
translate said prediction to other observers so we can compare results. This is

rooted on the need for science to be replicable.

It is of fundamental interest to study what kind of transformations between
observers preserve physics. For theses transformations to be consistent a couple

of requirements must be satisfied

1. For any observer O,, the transformation unto themselves must do nothing.

That is, there must exist a null transformation.
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Ta—m,:id

O, (3.0.1)

2. For any pair of observers O; and Oy such that there is a transformation
T : O — Oy there must exist a transformation T5_; : Oy — O; that

reverses the effects of T)_.,. That is, any transformation must have an

O,
T2 < '>T2—>1 (302)
O,

3. For any trio of observers O, Os and O3, the composition of transformations

inverse.

To—sb 0 Tp. must form the transformation 7, .. Where a,b € {1,2,3}. This

is, the composition is a closed operation.

Ta~>c
O, //;b\ 0, (3.0.3)

Ty—sc

4. For any quartet of observers O, Oz, O3 and Oy, it must not matter in which
order the composition of transformations 7, ,, o Ty_,. o T,._,4 is carried out.

Where a,b,c,d € {1,2,3,4}. This is nothing but associativity.

Ta%c
Of —5—— 0, Tb\OyOd (3.0.4)

Ty—a

Those are precisely the group axioms. The set of transformations along with the

composition between them (7, 0) forms a group.

While this is true for any set of transformations between observers, to properly

define the Poincaré group we need a little more structure.
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3.1 Spacetime structure

A Lorentzian manifold is a pair (M, g), where M, is a (d+ 1)-dimensional smooth
manifold and g is a pseudo-Riemannian metric of signature (— + +---4). A
pseudo-Riemannian metric is a non-degenerate, symmetric bilinear form g : My —
T*Mp, @ T*Mp". Let x : U C My — R%! be a chart and X,Y € T'(T'My) be
smooth vector fields, then at any point p € M,

SXY) = g3, ) = g (00 2 )
o 0

dak’ D

— X"V g(p) ( ) = g(p) W X" Y. (3.1.1)

For simplicity on notation, the dependence on the point p is usually omitted.
In any given chart (U,x) we can write the metric g as ¢(p),, dz* ® dz¥, where
9(p),. are real numbers and the matrix formed by them is symmetric and non-
degenerate. Using this, it is always possible to find another chart® (U, y) in which
the coordinate representation of g is diagonal by employment of usual linear

algebra methods.

g(p) = —a(p)dt ® dt + Z fa(p)dy® ® dy*, (3.1.2)

a=1

where both a and f, are positively defined functions over My and (¢,y*) are the
coordinates given by the chart (U, y). Choosing the linearly independent 1-forms
el, with I € {0,1,2,3}, €® := \/a dt and e* := \/f,dz® the expression in (3.1.2)

reduces to

g=nrel ®e’. (3.1.3)

IThe symbol T', when anteposing a set, refers to sections over said set.
2We are working under the assumption of having a maximal atlas.
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This construction locally equips the tangent bundle T'M; with a Minkowski
structure, which will be used shortly after to talk about the Poincaré group.
Before that, it will prove useful to talk a little more about other structure that

arises from the objects in Lorentzian geometry.

Let v : U CR — My be a path in M, and X, its tangent vector. We define the
length of the path v to be the integral®

Iy : = / V190G 0 X0 (3.1.4)

where 7 € U is a monotonically increasing parameter. We call g a metric precisely
because it gives us a way to measure lengths. It’s also worthwhile to mention that
g(A, B) is a (pseudo)-inner product between A and B, so sometimes we will be

using the notation

(A,B), = g(A,B) (3.1.5)

in places where emphasis in this is wanted.

This equips I' (T'M},) with a C* (M, R)-valued norm ||-||, and a way of measuring

angles in the usual sense an inner product does. The norm is given by

|-l : T(T'Mp) — C* (M, R) (3.1.6)

X — |IX], =/ (X, X),

: (3.1.7)

and the angle between two vector fields is defined as

3If you have studied relativistic classical mechanics you might recognize this functional.
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0:T (TMy) x T (TMy) — C% (M, R) (3.1.8)

(X,Y), )

S (3.1.9)
[ X gl Yllg

(X,Y) — 0(X,Y) := arccos (

This definition will be needed when we talk about the conformal group, so keep it

in mind.

3.1.1 Induced structure

Once a choice of metric g is made, it is possible to induce other structure from it.
All in service of making as few arbitrary decisions as necessary. In particular, we
can define a pseudo-inner-product for p-forms, a volume form and the Hodge star

operator. All of them relevant in this work.

3.1.1.1 Co-metric

A very natural question to ask once we have a pseudo-inner product on the tangent
bundle T'My, is whether we can construct from it one in the cotangent bundle
T*M;". First we need to construct a map that allows us to get a single co-vector

from any given vector. This is achieved by

»: T (TM,) — T (T*My) (3.1.10)
X —5(X) == g(X,"). (3.1.11)

Remark: this can be used to express ¢ (X,Y) as b (X)(Y). Also, the notation
X* = (X) is somewhat used to simplify this, so g (X,Y) =5 (X) (V) = X" (V).

With this, we can construct a co-metric g : My — T My ® TM° by imposing the

requirement that for all smooth vector fields X and Y

4The answer is yes, of course. And it follows the same logic as Riesz representation theorem
in quantum mechanics, where given any vector ¢y € H in the Hilbert space we get a unique
element of its dual H* by the use of the inner product Iy := (¥, -).

SIf we are really strict, g is a section over (T*Mp)" ® (T*Mp)". But the double dual of a finite
vector space is isomorphic to the vector space itself and we like to keep things simple.
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g((X),b(Y)) =g(X,)Y). (3.1.12)

We can, of course, express this in coordinates. Given a choice of a chart x we

have g(dz*, dz”) = g" and for arbitrary vector fields A and B we have

g(>(A),»(B)) = g(A,B) (3.1.13)
9(9(A,-),9(B, ")) = gapda® @ dz”(A, B) (3.1.14)

G (guArda”, g B di) = gosdz®(A)de® (B) (3.1.15)
Guw A" ger B g(da”, da*) = gas A* B’ (3.1.16)
(9" 9ir) Guv A" B = gog A“B”. (3.1.17)

Then, the requirement of equation (3.1.12) is equivalent to imposing that the
matrix [¢"”] constructed from the components of g is the inverse of that which is
constructed from the components of g. In other words, g, = 0*,. Note that this
implies that for a metric expressed as that of equation (3.1.2) we get a co-metric

expressed as

B 10 0 <1 9 0
g(p) = —ma@)aﬁ-;fa(p) Dy X e’ (3.1.18)

This also means we can construct a map »~! : ['(T*My) — T['(TM) by

employment of the co-metric g°

LT (T*Myp) — T (TMy) (3.1.19)
w— b (w) =7 (w,-). (3.1.20)

With this, we have a canonical isomorphism between vector fields over M and

SHurray for the formalization of raising and lowering indices.
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1-forms over Mj,

b

T
' (TMy) [ (T*Myp) (3.1.21)
f\_/

b—l

Of course, this can be generalized for tensor products of the tangent and cotangent

spaces of Mj,.

Finally, it may be relevant to remark that the existence of g gives us a pseudo-inner

product over T*Mj,. Let o and w be covector fields over M,

(,w). =7 (,w). (3.1.22)
This can be neatly summarized in the following diagram

TML X F TML

L

Now, dear reader, you may be wondering why so much emphasis on this. The

(Mg, R) (3.1.23)

) x T(T*M

reason is to make it clear how much of Lorentzian geometry relies on the existence
of a metric. All arrows in (3.1.23) are constructed using g. The requirement that
we can go back and forth between vectors and co-vectors using b and b~! is not
met when we are dealing with degenerate metrics, which appear both in Galilean

and Carrollian geometries.
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3.1.1.2 Volume form

A volume form is a non-degenerate, nowhere vanishing top form over an oriented
manifold”. Both requirements stem from wanting an object that gives a well-defined
notion of volume on a manifold. Most importantly, given a pseudo-Riemannian
metric g over M, there exists a volume form w, € Q%! (M) that, in coordinate

induced basis is expressed as

wy i= +/|det g, | dxt A - A da®T (3.1.24)

where det g, is the determinant of the matrix of components [g,,] with respect to
the chart (U, x).

Now, det g has a very strong dependence on coordinates and whenever one defines
something in such a way, care must be put into verifying that the choice of
coordinates does not matter. Given another chart y : V C M; — R with
non-empty intersection U NV with z : U C M — R it should be the case we

can transform from (3.1.24) to

wy = /| det g,| dy' A --- A dy™t (3.1.25)

in the intersection U N V.
Let ¢ : 2 (UNV) = y(UNV) be the chart transition map yoz~! and ® = (¢*) .
Then any 1-form o € T* (x (U N'V)) transforms under ¢ as ®«. This can be seen

in the following diagram

7An orientation is needed to have a properly defined notion of oriented areas and volumes, which
are used in integration theory in general and in Stokes theorem in particular.
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/’/L\
T (y(UNV)) CR*" PR — T ({UNYV) S SN T (z (UNV)) CR*™
y(UNV)CR" ¢———— (UNV)C M, ————z(UNV)CR"
@
(3.1.26)
where n = d + 1. In the particular case of 1-forms dz* we have
ozt
*drt = —dy” 3.1.27
¢*dx oy Y ( )

therefore, using the distributive property of the pullback we get that for a top

form
O (da' A+ Ada®™) = D dat A A D da® (3.1.28)
ot axd-&-l
= =—dy" ) A A dy” 3.1.29
<3y“ ! ) oy ( )
= det <%> dy' A - A dy®t (3.1.30)
Ay
= det (®)dy' A--- A dy*t?, (3.1.31)
and

dy> OyP
det (gy aﬁ%ax”) ’ (3132)

\/|det gz :\/

= \/|det gy det ((13*1)2| (3.1.33)

= 1/|det g,| |det (@71)]. (3.1.34)
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Putting it all together and using det (A) det (A7) = 1 we get

V| det g | det A - A de™ = sign (det @) /| det g,| dyt A -+ Ady™Tt. (3.1.35)

But since we are working in an orientable manifold, all chart transition functions
must preserve the orientation. Therefore sign (det @) = 1. And so our wonky
definition of a volume form wy is, in fact, chart independent and we can simplify
the notation as w, = /[det g|dz' A --- A dz®*!. Notice that we can also write it

aswy =e' A Aedth

This is quite important for it allows us to define integration over functions
f e C>®(Mp,R). Let (U,x) be a chart, we define the integration of f over U as

/Uf::/Ufwg, (3.1.36)

where the second term is the usual integration of a top form over a sub-manifold®.
To extend this notion of integration over the entire manifold, a partition of unity
is needed. The reason behind wanting an integration theory of scalar functions
over a Lorentzian manifold is to be able to have action principles in terms of

Lagrangians.

3.1.1.3 Pseudo-inner-product for p-forms

So far we've constructed a C* (M}, )-valued pseudo-inner product on the cotangent
bundle T*Mj, from the one in the tangent bundle TM;. A natural question is
whether it is possible to extend this to p-forms a € QP (Mp). The answer to this

question is, of course, yes.

Consider the function

Sle. [, fwg = L f(z)y/]| det gldiH1a
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(«;) : QP (ML) x QP (M) — C= (M)
(a,b) = (a,b) == aay .0, G ... G*Pbs, 5, (3.1.37)

For this to be a valid notion of a pseudo-inner product we need to check that it’s
invariant under change of coordinates, it’s bilinear and non-degenerate. Coordinate

invariance is easily checked. So is bilinearity since

<6L, b+ C> = aal.._apgalﬁl .. ‘gapﬁp (b61--ﬂp + Cﬁ1---ﬁp> (3138)
= Gay.ay 07 Gl 5 F G0, G G0, (3.1.39)
= (a,b) + (a,c). (3.1.40)

And the bilinear form (-, ) is symmetric

(a, b> = aal._apgalﬂl .. .gapﬂpbﬁl._ﬂp = bﬁl_ﬂpgalﬂl .. .gapﬂpaal_._ap = <b, a>.
(3.1.41)

Bilinearity checked it only rest to check non-degeneracy, which is a direct
consequence of non-degeneracy of the metric g.
3.1.1.4 Hodge dual star operator

The main topic of this work is electrodynamics, which is a U(1) gauge theory. In
gauge theories we have three main objects to work with: the connection A, its
curvature F' and a current J. While it is true it is possible to construct an action

in four dimensions with only this for a U(1) theory, namely

/F/\A/\J, (3.1.42)
U

to build electrodynamics as we know it we need a way to have a non-vanishing
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quadratic term of F" and this is not possible without introducing a metric structure
since FAF =d(ANAF) is a border term and therefore yields no dynamics in the

bulk. Here is where the Hodge dual star operator comes into play.

The Hodge dual star operator is the unique map’  : QF (M) — Q1= (M)
such that for any a, 8 € QP (M)

aAxf = —(a, Buw,. (3.1.43)

In coordinates, the Hodge dual of a p-form o = —'ozm,_updx‘“ A--- Adxtr in a
p

(d + 1)-dimensional Lorentzian manifold is

1

(*a)Vp+1"'”d+1 - m |detg| Oé“l'"“pgmyl e 'gupypel’l-~l’p”p+1~--l’d+1’

(3.1.44)

where €, ., is the completely antisymmetric Levi-Civita symbol with orientation

€o12..da = 1.

3.1.2 Causal structure

Causal structure refers to a (local) classification of non-zero vectors X € T,M,
in the tangent space T,M|, into space-like, time-like or null if"’ ¢ (X, X) > 0,
g(X,X) < 0or g(X,X) =0, respectively. This is usually represented as light-
cones, with the interior of said cone corresponding to the sector Ut € M which can
be reached by light signals emitted at the point p € M|, or the sector U~ € M| that
can reach the point p with light signals. A smooth curve v: U C R — ~(U) C M,
is called timelike, spacelike or null if its tangent vector 4 € Ty (U) is timelike,
spacelike or null, respectively for every point along the curve . A vector field can
also be called timelike, spacelike or null if at every point it satisfies the appropriate

criterion.

9The case of Riemannian geometry has a A %3 = {(«, B)w,.
10Causal structures can be defined in a purely topological manner without referring to a metric,
as was shown in ( ).
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Furthermore, a Lorentzian manifold is said to be time-oriented if it admits a
continuous, nowhere vanishing, timelike vector field 7. This vector field is used to

classify timelike vector fields as future-directed or past-directed.

3.1.3 Minkowski spacetime

Let (M, n) be a Lorentzian manifold. We say that (M, n) is Minkowski spacetime
if and only if

1. M is the Cartesian space R+
2. n is, in standard coordinates, characterized by diag(—1,1,...,1).

A very important and immediate consequence of this definition is that Minkowski

spacetime is flat. i.e. its curvature vanishes.

3.2 Group structure and decomposition

The isometries of a spacetime structure (M, g) are isomorphisms a : M — M that
preserve this structure. For this to happen it is needed that the metric remains

invariant under the pullback a* of a

a'g=g. (3.2.1)

In other words, for all vector fields X,Y € TM (a*g) (X,Y) = g(a.X,a.Y) =
g (X,Y). Consider the case where the map a is the flow h : M — M of a vector

field X, then we can construct an equivalent criterion via a differential quotient

(hX) g—g=0 (3.2.2)
hi) g—
i 3 979 _ (3.2.3)
A—0

where Lxg is the Lie derivative of g with respect to the vector field X. This makes
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easy to check whether a vector field X generates a symmetry transformation of
the metric g. The real vector space formed by all vector fields satisfying (3.2.4)
constitute a Lie sub-algebra of the Lie algebra of vector fields over M ( )
with Lie bracket

[,]: T(TM) x T (M) — T (TM) (3.2.5)
(A,B) — [A, B] .= AB — BA. (3.2.6)

Let A and B be vector fields that generate isometries of ¢ and « a real number,

then their linear combination A + B is an isometry of g

EaA+Bg =alarg+ Lpg =0, (327)

this is also the case of their commutator [A, B]

E[A,B}g:,CAﬁBg—EBL'Ag:O. (3.2.8)

Just as these form an algebra, the isometries themselves constitute a group with
product given by the function composition. Not all isometries can be obtained

through exponentiation a = exp (tX') though, only those connected to the identity.

The Poincaré group 1SO(d, 1) is the group of isometries of (d + 1)-dimensional
Minkowski spacetime. In this work we are mostly concerned with 4-dimensional
geometry'! therefore we will be dealing with the group ISO (3, 1) and its algebra
i50 (3,1). Said algebra consists of vector fields X € I' (T'M}) satisfying (3.2.4),
this is

i50(3,1) ={X e I'(TM)|Lxn = 0}. (3.2.9)

HBecause our classical world is 4-dimensional.
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3.2.1 Spatial translations

Each spatial translation is a 1-parameter subgroup of the Poincaré group with

generator'?

Pyi=—r. (3.2.10)

For checking whether it belongs to the algebra iso (3, 1), it is convenient to use

the following properties of the Lie derivative

where S and T are tensor fields over M and w is a p-form. Using these two

properties, the calculation of the necessary Lie derivatives is quite straightforward

Lp,n=Lp, (Nudz' @ dz") (3.2.12)
= N (Lpydat) @ dz” + ny,dat @ (Lp,dx”) (3.2.13)
= Nud (dat (Ps)) @ dz” + nydat @ d (dz” (Pa)) (3.2.14)
_o. (3.2.15)

So P4 € is0(3,1), we now need to reconstruct its isometry. This is done by the
usual method of finding the integral curves of vector fields P4 and then using
them to construct the flows that serve as the action of the 1-parameter subgroup

with generator Pj,.

12From this point onward, uppercase indices will indicate space, running from 1 to 3 and greek
ones will indicate space-time, running from zero to three.
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Let X be a vector field in the algebra, the flow h¥ of the vector field X is a

function

R Rx M — M (3.2.16)
(A, m) = b~ (A, m) ==y, (N), (3.2.17)

where 7, is a solution to the following system of ordinary differential equations

Im(A) = X5, (3.2.18)

with initial conditions 7,,(0) = m and where 4,, is the tangent vector to the curve

v and X,  is the vector field X evaluated along said curve.

For the case of P;, this equation reads as

:)':(A)% + y(A)a% + z’()\)% + t'(A)a = %. (3.2.19)

Using linear independence and solving the equations with initial conditions z#(0) =

xfy, we conclude that

R (Nt x,y, 2) = (o + Ny, 2). (3.2.20)

It follows this is also the case for both P, and P;, with

R (Nt x,y,2) = (Lo, y+ X 2) A (N ta,y 2) = (toy z+N). (3.221)

The following picture are shows the flow lines of A, with the horizontal axis
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being = and the vertical axis being the time ¢'%.

04l —_—

—_———

0.2 —_—

0.0l —_—

—02}+

I I I I I
-04 -0.2 0.0 0.2 04

Figure 3.2.1: Integral curves of P;.

3.2.2 Time translations

Time translations are also a 1-parameter subgroup of the Poincaré group and it
shares the exact same shape as spatial translations. Which makes sense since, in
the context of special relativity, time and space are just labels to one sole thing:

space-time.

The generator H € is0 (3,1) of time translations is

H:=-—. (3.2.22)

We proceed to check whether it generates an isometry via Lie derivative of the

Minkowski metric

Lyn =Ly (nudz" @ dz"”) (3.2.23)
= N (Lpds") ® dz” + nydat @ (Lydx”) (3.2.24)
= Nud(det (H)) @ dz” + nydet @ d (dz” (H)) (3.2.25)
—o. (3.2.26)

13This is the usual way of representing space-time in special relativity.
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We now consider the flow equation for time translations

Ym(A) = Hy,o ) (3.2.27)
N0 0 9 .9 10
(A5 + y(A)a—y +iN) oo+ 5 = o (3.2.28)

The solution of this differential problem with initial conditions z#(0) = xf is the

CUTVE Y(t0,20,50,20) (A) = (to + A/¢, o, Yo, 20). Therefore the flow of H is

RE (Nt x,y, 2) = (t+ N e, oy, 2). (3.2.29)

The isometries h"4 and h? are each a representation of the additive group (R, +).
The integral lines of H are represented below, with time as the vertical axis and

space as the horizontal axis.

T

0.2

0.0

il

-04F j

-0.4 -0.2 0.0 0.2 0.4

Figure 3.2.2: Integral curves of H.

3.2.3 Spatial rotations

Each spatial rotation is a l-parameter subgroup of the Poincaré group with

generator J4 € is0(3,1) given by
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0
,_ B
JA = €ABCT ax—c, (3230)
where €4p¢ is the 3-dimensional Levi-Civita symbol with €153 = 1.

We check that it satisfies the condition (3.2.4), as we have already done with

spatial and time translations

Ly,n=~Ly, (udxt @ dz”) (3.2.31)
= N (L,dx") @ dz” + nyed @ (Ly,dx") (3.2.32)
= Nud (da" (J4)) ® dz” + nudz? @ d (dz” (J4)) (3.2.33)
= New €apedr® ® dz” + n,c €apoda” @ da® (3.2.34)
= nep eapedr? @ dzP + npe eapoda® ® da® (3.2.35)
— 0, (3.2.36)

where the last line corresponds to the symmetrization of an antisymmetric object
and is therefore zero. We construct the flows h’4 by solving the differential

equations

Ym(A) = Ty (3.2.37)

We start with J;, whose differential equation corresponds to

w)% + g)()\)a% + Z(A)% + i3 = 25— ¥V (3.2.38)

Solving this equation we get the flow

R (At x,y, 2) = (L, z,ycos A+ zsin A, zcos A — ysin \), (3.2.39)
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which corresponds to a rotation of angle A € R with respect to the x-axis, which
can be thought of as the action of the additive group (S!,+). We repeat the

procedure for J,

3':(/\)% + y‘(A)a% + Z(A)% + i(A)% = a;(A)2 - Z(A)g. (3.2.40)

Solving this equation we construct Jy’s flow

h72 (At x,y, 2) = (t,xcos A — zsin A, y, zcos A + xsin \) (3.2.41)

which corresponds to a rotation of angle A € R with respect to the y-axis, which can
be thought of as the action of the additive group (S*, +). Finally, the differential

equations for J; are as follows

:i:()\)(% + y(A)a% + z'()\)% + i(A)% = y(A)a% — x(A)i (3.2.42)

We use the solution of this equation to construct the flow

h’s (\t,x,y,2) = (t,mcos A +ysin A,y cos A — xsin \, 2), (3.2.43)

which corresponds to a rotation of angle A € R with respect to the z-axis, which
can be thought of as the action of the additive group (S*,+). The three rotations
put together are an action of the rotation group SO(3)".

3.2.4 Boosts

Each boost is a one parameter subgroup of the Poincaré group that mixes space
and time in pretty much the same fashion as spatial rotation mixes space. Boosts

have generators By € iso (3, 1) given by

14Recall this only allows us to recover the connected part to the identity.
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.................................

Figure 3.2.3: Integral curves of J;.

0 T A 0
By i=ct— + ——. .2.44
A Ctax“‘ * c Ot (3 )

It is noteworthy to mention x4 is simply a shorthand to nszz® and since we
cleverly chose the signature this is the same as #* and should not be confused
with the musical isomorphisms since this is not a vector nor a covector. We verify

B4 €is0(3,1) as follows

Lp,n=Lp, (Nudc" @ dz") (3.2.45)
= N (Lp,d2") @ dz” + nydat @ (Lp,dz”) (3.2.46)
= Nud (dz" (Ba)) @ dz” + nydet @ d (dz” (Ba)) (3.2.47)

= Naycdt @ dz” + %nol,d:cA ® dx” + nyadz" @ cdt + %nuodx“ ® dz?
(3.2.48)

= napcdt @ dz® — cdry @ dt + napedz® @ dt — cdt @ day (3.2.49)

= 0. (3.2.50)

Next we construct the flows by solving the appropriate differential equations. For

Bj this equation is
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N A B BERORNY:
()5 + y()\)a—y + 2N g HIN) 5 =g+ o (3.2.51)

Solving this we conclude that the flow of B; is

RBY (M t,2,y, z) = (tcosh (c)\) + xsinh (c)) /¢, z cosh (cA) + ctsinh (cA) ,y, 2) .

(3.2.52)
For the vector By we've got the following equation
0 0 o . ...0 g wyo
E(A)— + y(N)— + 2(\)=— — =ct— + =— 2.
( )81: + y()\)gy + z()\)az + t()\)at ctay + T (3.2.53)

so the flow of By is

hP2 (A t,7,y,2) = (tcosh (c\) + ysinh (c)) /¢, 7,y cosh (cA) + ctsinh (c)), 2) .

(3.2.54)
Finally, the remaining equation to solve is
0 0 o . .0 o z0
t(A)=— + 79 N)=—+ 2N =—+t(\)= =ct— + —— 2.
(M) 5 + U )ay+2( )5, TN =cto-+-=, (3.2.55)

and the flow of Bj is

hBs (X, t, 2,9, 2) = (tcosh (cA) + zsinh (cA) /¢, z,y, z cosh (cA) + ctsinh (c))) .
(3.2.56)

We illustrate how these three flows work in the following graph, which corresponds
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to the flow lines of B;

N
T

o
T

Figure 3.2.4: Integral curves of B;.

The three spatial rotations h”74 together with the three boosts h?4 correspond to
the action of the group SO (3,1).

3.3 Algebra

Having the vector fields that generate iso (3, 1), it is possible to construct their
algebra by taking the differential geometric commutator between them. Recall
that the algebra iso (3, 1) is generated through the linear combination of P4, H,
Ja and By, this is

i50 (3,1) = spang.A, (3.3.1)

where A := {Ps, H, JA>BA}A={1,2,3}~ This, together with the following

commutators

[PA,PB] =0 [PA,H] =0 [PA7JB] == EAgcJC [PA,BB] == 5ABH (332)
[H, JA] =0 [H, BA] = CPA [JA,JB] = EABCJC [JA,BB] = GABCBC, (3.3.3)

constitutes the Poincaré algebra. Generators X € is0(3,1) constitute all isometries
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of Minkowski metric.

3.4 Conformal extension

The Poincaré group are all transformations that preserve the distance defined by the
Minkowski metric. This can be extended to consider all symmetry transformations
that preserve the angles between vector fields as defined in (3.1.8) associated to 7.

In other words, transformations such that the angle

6 :T (TM)x T (TM) — C™ (M,R) (3.4.1)

XY, >

T (3.4.2)
X[ 1Y []

(X,)Y) — 0(X,Y) := arccos (

remains invariant. Let the map a : M — M be a map such that a*n = Q?7,
where 2 : M — R is a real-valued non-zero function, then for all vector fields
X,Y € I'(TM) we have

(a*0) (X,Y) = 0 (a. X, a.Y) (3.4.3)
B (a, X, a*Y>77
= arccos (na*xnnna*ynn) (3:44)
= XY, 3.4.5
= arecos | v (3:45)
—0(X,Y). (3.4.6)

It follows these transformations are part of the conformal extension. Furthermore,
if a*n = Q%n it follows a,7 = Q727" which means a* (n ® ) = (a™n) ® (a.7) =
n ® 1. Which can be used to construct a useful criterion to identifying the
generators of conformal symmetries via differential quotient. Let a = exp (AX)

for a real parameter A and a vector field X, then

15Recall 1 is the co-metric of 7 as defined in (3.1.18). This object is usually referred to as inverse
metric but this name is preferably to be avoided.
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exp(AX)"(n®@7) —n®iq=0 (3.4.7)

fi SPAX) 00) Zn@n_ (3.4.8)
A—0 A

Ly (n®n)=0. (3.4.9)

All vector fields in X € iso(3,1) satisfy this criterion since Lxn = 0 and Lx7 = 0.
There are two additional generators that extend this algebra, space-time dilations

D and special conformal transformations S,,. Dilations have generator

D=2t + 19 (3.4.10)

The Lie derivative of the metric n with respect to the dilation generator D is

given by

Lpn =Lp (nudz" @ dz") (3.4.11)
=Lp (—Pdt ® dt + §apdz” ® dz”) (3.4.12)

=—c%d(dt (D)) @ dt — *dt @ d (dt (D)) + dapd (dz" (D)) ® dz”
+ dapdz” ® d (dz® (D)) (3.4.13)
=2 (—c*dt ® dt + § spda” @ dz”) (3.4.14)
=2n. (3.4.15)
The Lie derivative of 77 with respect to D can be proven to be Lpn = —2 1,

therefore Lp (n ® 77) = 0 and condition (3.4.9) is satisfied.

The symmetry transformation associated with this vector field is obtained after

solving the system of ordinary differential equations
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a‘:(A)% + g)(A)a% + Z(A)% + t’(/\)% = x()\)% + y(A)a% + z()\)% + t(A)%.
(3.4.16)

Solutions with initial conditions of this system of ODEs are used to build the

flows that serve as the action of space-time dilations

WP (Mt z,y,2) = (ekt, erx, ey, e’\z) , (3.4.17)

which, of course, corresponds to acting with a multiplicative factor on all space-time

coordinates.

Special conformal transformations are the less obvious conformal transformations.

The temporal special conformal transformation is generated by the vector field S

0 0 0 0
02, 9 50, O 50, O 9 9 9 9y 0
So = —2c tx@m 2c tyay 2¢ tz(% (P + 2% +y° + 2% 5% (3.4.18)

The Lie derivative of the metric n with respect to the vector field S; is computed

as follows
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Lg,n =Lg, (Nudz" @ dz") (3.4.19)
=Ls, (—?dt @ dt + dapda” ® dz®) (3.4.20)
= —c%d(dt (Sy)) ®@ dt — Pdt @ d (dt (Sp)) + dapd (dz™ (Sp)) ® dz”

+ Sapda® @ d (dz® (Sp)) (3.4.21)
=2d (P + Sapr’a”) @ dt + Fdt @ d (Pt* + dapr’a”)
— 2¢%0apd (t2) ® da® — 2¢°5 s pda” ® d (ta”) (3.4.22)

=202 (c2tdt + 5ABq:deA) ® dt + 22dt ® (cztdt + 5AB$Ade)
— 225 452 dt @ da® — 2¢%tda? @ da® — 2¢*6 4pda® @ 2P dt

— 225 gpda® @ tdaP (3.4.23)
= — 2% (—Pdt @ dt + S ppdz” ® dz”) (3.4.24)
= —4c’t . (3.4.25)

The Lie derivative of 7 with respect to Sy can be proven to be Lg,71 = 4c*t 7,
therefore Lg, (n®7) = 0 and condition (3.4.9) is satisfied. To find the

transformation associated to Sy we need to first solve the system of ODEs

0 :55()\)% + g'/()\)a% + Z(A)% + i()\)%
+ 202t()\)x()\)(% + 202t(/\)y()\)(% + 20225()\)2()\)%
+ (PN 4+ 2(A)* + y(N)? + 2(V)?) % (3.4.26)

This system has a unique solution for given initial conditions, which is used to

construct the transformations as flows
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(=Pt + 2% + 2+ 22) (t — M (=P + 2% + y* + 27))
—c2 (t—)\(—02752+x2+y2+22))2+x2+y2+z2 ’
z (=2 + 22 + 42 + 2?)
—c2 (t—/\(—c2t2+x2+y2+22))2+x2+y2+z2’
y (=2 + 22 + y? + 22)
—2(t = N(—c22 + 22 + 12 + ZQ))2 + 22 4 y2 + 22
2 (=t + 22 + y* + 2%) )

hso()\,t,x,y,z) = (

—2 (t — N (=22 + 22 + 92 +z2))2+x2 + 42 + 22
(3.4.27)

The special conformal transformation in the z-direction has generator S; given by

0 0 0 0
Si= (PP +a° —y? — 2°) — 4+ 20y— + 202— + 2. 3.4.28
= (PP +a27—y Z)ax+ xyay—l— rag +2r ( )
The Lie derivative of the Minkowski metric 1 with respect to the vector field .S is

computed as follows

Lg,n =Lg, (—c°dt ® dt + §apda” @ da®) (3.4.29)
=—Ad(dt(S1)) @ dt — dt ® d (dt (S1)) + dapd (dz” (S))) ® da®
+ 64pde @ d (dz® () (3.4.30)

= —%d(2tz) @ dt — Pdt ® d (2tz) + dapd (222) ® da®

+ dapdz” ® d (222°) — d (nuata”) ® de — dx @ d (natz”)  (3.4.31)
= — 4Pzdt @ dt — 2Ptdr @ dt — 2¢%tdt @ dx + 46 spdz? & da®

+ 2240 4pdr @ da® + 2285 spdr® @ dx — 2natde” @ dx

= 2n0”dr @ dat (3.4.32)
=4 (—c*dt ® dt + dapda” @ dz”) (3.4.33)
=4x 1. (3.4.34)

The Lie derivative of 1 with respect to S; can be proven to be Lg, 71 = —4x 17,
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therefore Lg, (n®7) = 0 and condition (3.4.9) is satisfied. To find the

transformation associated to S; we need to first solve the system of ODEs

0 zs'c(A)3 + y(A)% + z'(/\)% + i(A)%

0

= (O + 2N = y(N)* = 2(V)°) 52

- Zx()\)y()\)gy - 2x(/\)z()\)% - Qt(/\)x(/\)%. (3.4.35)

This system has unique solution for given initial conditions, using this the

transformations are built as a flow

(=8 4+ 2% 1+ 4 + 22)
(= A(—22 + 22 + 2+ 22))* — 242+ y2 + 22
(=2 4+ 22 + 42+ 22) (& — A= + 22 + ¢ + 22))
(= A (—c22 + 22 + 92+ 22))° — 22 4 y? + 22
y (=2t + 22 +? + 2?)
(= A (—c22 + 22+ 2+ 22))? — 242 + y2 + 22
e Iy > (3.4.36)
(r— A2+ a2+ 2 +22)) — 22 py2 422 )

B (ANt z,y, 2) = (

The special conformal transformation in the y-direction has generator Sy given by

0 0 0 0
Sy = Qxy% + (cth P z2) 8_y + 2yz§ + 2ty§. (3.4.37)
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The Lie derivative of the metric n with respect to the vector field Ss is computed

as follows

Lg,n =Lg, (—*dt ® dt + Sapdz” ® dz”) (3.4.38)
= —%d(dt(S2)) @ dt — Pdt @ d(dt (S2)) + Sapd (da? (Ss)) ®@ dz” + dapdz™ @ d (dz” (S,))
(3.4.39)
= —%d(2ty) ® dt — *dt ® d (2ty) + dapd (2y2”) ® da® + 6 apda” @ d (2yz®)
—d (Nua"s") @ dy — dy @ d (natz”) (3.4.40)
= — 4Pydt @ dt — 2c%tdy @ dt — 2¢4tdt @ dy + 4ydapdr? @ daP
+ 2240 4 5dy ® daP + 2286 4pda® ® dy — 2ntdr” @ dy — 2nx”dy @ dat

(3.4.41)
=4y (—Pdt ® dt + Sapdz” ® dz”) (3.4.42)
=4y n. (3.4.43)

The Lie derivative of 1 with respect to S; can be proven to be Lg,n = —4y 1,
therefore Lg, (n®7) = 0 and condition (3.4.9) is satisfied. To find the

transformation associated to Sy we need to first solve the system of ODEs

0 :f()\)(% + :z)()\)a% + ,é()\)% + i(A)% (3.4.44)
=2 — (AP = 2OV + 5O = 20F) 3~ 20205 = 20N
(3.4.45)

This system has a unique solution for given initial conditions. Using these solutions,

the transformations are built as a flow
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t(—ct? + 22 + > + 22
(y = A(—2t2 + 22 + 32 + 22))* — 2 4 22 + 22
x (=2 + 22 +y? + 2?)
(y = A(—2t2 + 22 + 32 + 22))* — 22 4 22 + 22
(=P + 2 +y° +22) (y = A (= + 2% +y* + 2°))
(y — A(—c2t2 + 22 + 2 + z2))2 — 22 42 4 2
2 (= + 22 4 2 + 22) ) . (3.4.46)

B2 (ANt z,y, 2) = <

(y — A (=22 + 22 + y2 + 22))° — 22 4 22 4 22

The special conformal transformation in the z-direction has generator S; given by

0 0 5} 0
= 22— +2yz— + (Pt —2® —y* + 2%) — + 22— 4.4
Ss a:zax+ yzay+(ct x*—y +Z>8z+ tzé?t (3.4.47)

The Lie derivative of the metric n with respect to the vector field S5 is computed

as follows
Lg,n=Lg, (—dt ® dt + Sapdr® ® dz"”) (3.4.48)
=—2d(dt (S;)) ® dt — Pdt @ d (dt (S3)) + dapd (dz (S3)) ® dx®
+ dapdz” ® d (dz® (S3)) (3.4.49)

=—2d(2t2) @ dt — Adt @ d (2t2) + dapd (2227) ® da®

+ Sapda® ® d (2227) — d (nuata”) @ dz — dz @ d (g,2"2”)  (3.4.50)
= —4Pz2dt @ dt — 2c%tdz @ dt — 2¢%tdt @ dz + 420 sgdz? & da®

+ 2040 4pdz @ da® + 2285 4pda? @ dz — 2n2tdr” @ dz

— 2na’dz @ dat (3.4.51)
=4z (—cPdt @ dt + Sapdr? @ dz") (3.4.52)
=4z . (3.4.53)

The Lie derivative of 7 with respect to S3 can be proven to be Lg,n = —4z 17,
therefore Lg, (n®7n) = 0 and condition (3.4.9) is satisfied. To find the
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transformation associated to S3 we need to first solve the system of ODEs

0 :g‘c(A)% + y(A)% + 73(/\)% + t'()\)%
— 2x(A)z(A)(% — 2t()\)z()\)%
~ zy(A)z(A)a% — (AN = 2(N)? —y(N)? + 2(V)?) %. (3.4.54)

This system has a unique solution for given initial conditions, which are used to

construct the transformation as a flow

t(=ct? + 22 + 2 + 22
(2 = A (=22 + 22 + y? + 22))° — 22 4 22 + 2
x (=2 + 22+ y? + 2?)
(2 = A (=22 + 22 + y? + 22))° — 22 4 22 + 2
y (=t + 22 + 42 + 22)
(2= A(—t2 4+ 22 + 2 + 22))> — 22 4 22 + 2
(=2 +a? + Y2+ 22) (2 = A (=22 + 22 + y* + 22))
(2 = A (=22 + 22 + y2 + 22))° — 22 + 22 + y? >
(3.4.55)

B8 ANty 2) = (

The conformal group consists then of space-time translations, space rotations,
boosts, space-time dilations and special conformal transformations. It was shown
by Coleman-Mandula in ( ) that this is the most
general space-time symmetry group of a non-trivial, relativistic field theory and

has a strong presence in theoretical physics.
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3.4.1 Algebra

The algebra of the group ISO (3, 1) is obtained by taking the differential-geometric

commutator of all generators of the group and is given by

(Pa, Pg] = 0 [Py, H] =0 [Py, Jp] = eapcde (3.4.56)
[Py, Bg| = 6agH  [H,Ja] =0 (H,Ba| = cPs  (3.4.57)
U, 5] = eapode [Ja, By = eanoBe (H,S] = 2B,y (3.4.58)
[H,So] = 2¢D [Pa, SB] = 204D + €apcJc  [Pa, So) = —2c¢B4  (3.4.59)
[Ja,SB] = €apcSc [Ja,50] =0 [Ba, Sp] = —%5ABSO
(3.4.60)
(B, So] = —cBa [P, D] = P (HD|——H  (3.461)
[Ja, D] = 0 [Ba, D] =0 D,S.] =S, (3.4.62)
D, So] = So. (3.4.63)
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Chapter 4
Carroll group and Carrollian algebra

The Carroll group was first described by Levy-Leblond in 1968 in

( ) in an effort to categorize all possible kinematic groups that
allow for boosts, rotations, translations and have some notion of causality. The
Carrollian limit is also called the ultra-relativistic limit, in which the speed of
light is taken to zero. This causes the collapse of all causal cones into causal lines,
meaning every point can only causally affect itself. Because of this, it was first
believed Carroll-invariant field theories were all static, but there have been models

found to admit dynamical solutions in the presence of interactions.

The Carrollian Lie algebra was first obtained as a contraction of the Poincaré
algebra as the limiting case of taking the speed of light to zero and was, rightfully

s0, ignored since there was no physical reason to be interested in it.
Now, of course, we have reasons to care.

Since then, Carrollian geometry has found its footing in theoretical physics in
the gravity and cosmological side. From effective physics at null infinity
( ) to dark matter studies ( ), Carroll has become a part of the

landscape of relevant groups in our discipline.

Study of Carrollian limits requires a background on Carrollian geometry, which is
briefly presented here. We start by defining some structure. A Carroll manifold is
a quadruple (C, g,&, V), where ( )

e Cis a (d+ 1)-smooth manifold.
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e ¢ is a rank 2 degenerate metric tensor field.
e ¢ is a nowhere vanishing complete vector field which spans ker(g).
e V is a symmetric affine connection that parallel transports both g and &.

Notice that there is a significant difference between a Lorentzian manifold and
a Carrollian one. Namely, there is not a non-degenerate metric tensor field' in
a Carrollian manifold. An immediate consequence of this is there is mostly no
metric induced structure, no pseudo-inner products to be had, no volume form

constructed from the metric.

A Carroll group is the group of automorphisms of a Carroll structure.

4.1 Flat Carrollian structure

The standard flat Carroll structure is given by the choice

O R « R g = dapda? @ dzP £=— I‘;k: )

This spatial Carroll metric can also be obtained from the Minkowski metric
dS? = —da® ® da® + d,pdx? ® dxP by choosing s = C2” and taking C' — oo.
These choices may seem arbitrary but are in fact a consequence of them coming
from Minkowski spacetime. Indeed, the reason why the underlying manifold is a

power of the real numbers and the connection is set to zero is the same.

4.2 Flat Carroll group action

The Carroll group is formed by the set of automorphisms that preserve the

Carrollian structure. Let a : C4t — C%*! be one such a map, then we have

a'g=g a,§ =¢& a*V =V. (4.2.1)

! Although there exists a killing form in (2 + 1) dimensions ( ).
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The set of all transformations that leave the flat Carrollian structure invariant is
the flat Carroll group Carr (d +1). This is

Carr (d+1) = {a € End (C’d+1)| ag=ghal=ENa’V =V}, (4.22)

This set is conformed by spatial rotations, time translations, space translations

and time boosts.

The bilinear function g is only degenerate in the full Carrollian manifold. If we
were to consider the restriction to the spatial part we would be looking at the
standard inner product in R¢. It follows we have a well-defined notion of rotations

in this submanifold given by the group orthogonal group O(d).

Time translations are characterized by the additive group (R, +). Likewise, spatial

translations are characterized by (Rd, +).

Time boosts are also formed by the additive group (Rd, —i—) but their action comes

in a slightly more complicated way, namely, a semi-direct product.

Putting it all together, the flat Carroll group can be written as

C™ = (RaRY) x0(d). (4.2.3)

Given our choices, representatives of Carr(d + 1) and C%*! are of the form

R 0 c
a=|-b'R 1 f|eCarr(d+1) T = (S> c C™ (4.2.4)
x

0 01

where R € O(d) is a d-dimensional orthogonal matrix, b,c € R? are both d-
dimensional real vectors and f € R is a real number. Which allows us to define

the action
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>c: Carr(d+1) x CH — ¢! (4.2.5)

s—blRx+ f

(a,2) — ab>ox =
Rx+c

, (4.2.6)

which is just the matrix multiplication of a and =z.

4.3 Carrollian Lie algebra

With this in mind, it’s possible to define its Lie algebra cart(d + 1), which is

composed of vector field of the form

+ (¢ — Baz?) 0 (4.3.1)

X = ((,UABIEB + ’YA) a,

dxA

where w € so(d), 3,7 € R? and ¢ € R. Vector fields X € carr (d + 1) satisfy the

infinitesimal version of invariance conditions shown in (4.2.1)

These conditions allows us to define the flat” Carrollian lie algebra care (d + 1) as

care (d+ 1) :={X €T (TC™")|Lxg=0ALx{ =0ALxV =0}. (4.3.3)

Of course, one can consider each kind of transformation separately

0 0 0
JAZEABC{EB— KA:IA— P():— (434)

Pa 0x¢ 0s

~ OxA

2The insistence on flat is to distinguish it from the conformal case, in which the requirement
placed on the connection is dropped and the remaining two conditions are modified.
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and construct the algebra by taking the differential-geometric commutator of these

vector fields

[, ] : T (TC™) x T (TC*™') — T (TC*) (4.3.5)
(A, B) — [A, B]. (4.3.6)

This is
[Ja, JB| = €aBcJo [Ja, Kp| = €apcKe [Ka,Kp] =0 (4.3.7)
[JA,PB] :EABCPC [KA,PB] :5ABPO [JA,P()] :0 (438)
[Ka, P)] =0 [Pa, Pg] =0 [Pa, Py] = 0. (4.3.9)

This can also be obtained as contraction from the Poincare algebra, as was done

in the original paper ( ).

Reconstruction of the symmetries by using their generators is possible by the
usual method, which has been done for Lorentz symmetry in 3.2 and in this case
reproduces the action >¢ defined in (4.2.6). Explicit reconstruction of Carrollian

symmetries is done for electrodynamics in a following chapter.

4.4 Conformal extension

Carrollian limits of Maxwell and ModMax theory have symmetries belonging to
the conformal Carroll group of level two. For this reason we must employ some
time talking about conformal extensions of the flat Carroll group Carr (d + 1).
Flatness as a requirement is dropped for the conformal extensions®, which means
time translations and Carrollian boosts can be condensed in a single (C’OO (Rd) , +)

additive group. Let f € C* (Rd), then super-translations

3The paper ( ) also makes the distinction between strong Carroll structure
(C’d“,g,g, V) and weak Carroll structure (Cd“,g,f), with the infinite dimensional super-
translations being a part of the endomorphisms of weak Carroll structure.
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s — s+ f(z,y,2) (4.4.1)

are allowed as part of any conformal extension of Carr (d 4 1). The flat Carroll
group admits various conformal extensions, which appear in different cases of
Carrollian limits of relativistic conformal field theories. These extensions are
categorized by a natural number k. Let us then define the Conformal Carroll
group of level k CCarry (d + 1) to be the set

CCarry (d+ 1) := {a € End (C*)

a* (g ® §®k) =g® §®k} ; (4.4.2)

where k € Ny is a natural number and ¢®* is the k-th tensor power of the vector

field &

k
¢ = X)¢ (4.4.3)
n=0

Requirement (4.4.2) can be put into differential form, which allows to define the

conformal Carrollian Lie algebra of level k, denoted by ccarry (d + 1).

First let the group element a = exp (AX) be a 1-parameter subgroup generated by
X € cearrg (d+ 1), then we can construct a Lie derivative by using a differential

quotient with the group parameter A

exp(AX)" (9@ €%F) —g ¥ =0 (4.4.4)

oy SPOX) (@) —g g™ (4.45)
A—0 A

Lx (g®&®) =0 (4.4.6)

Then the desired definition of the conformal Carrollian Lie algebra of level k is



48 4.4. Conformal extension

ceavty (d+ 1) := { X e T (TC™")| Lx (9 ® £*%) = 0} (4.4.7)

Sufficient and necessary condition for this to happen is*

Q
Lxg =1y Lx¢ = _Eé (4.4.8)

Where Q : 04! — R is an arbitrary real-valued section over the space C%+1.
Were this not the case, there would be additional terms in the Lie derivative
Lx (g ® §®k). Further analysis of conformal Carrollian groups of level £ = 2 are
done when discussing the symmetries of Carrollian limits of Maxwell theory, other

cases are beyond the scope of this work.

4These conditions are more useful for actual computations, which will be seen further along the
road.



Chapter 5. Carrollian limits of a scalar field 49

Chapter 5
Carrollian limits of a scalar field

The simplest (3 + 1)-Lorentzian theory in which we can take the Carrollian limit
and therefore use as an example for the procedure of the work to come is that of

the scalar field. We start by writing the action of the free scalar field

S(ovdo] = - [ 5 (ds.do)d'o (5.01)
:Kjéﬁcg)_%v¢v4d%’ (5.0.2)

where 0 C R* is an open submanifold of Minkowski spacetime. Arriving at the
equations of motion for this field theory is standard practice and can be seen,
for example, in ( ). In this case, a procedure inspired by

( ) will be used. We start by considering a variation characterized by a

one-parameter family of scalar fields

¢(a) = ¢ + aa, (5.0.3)

where o € R and a is a C! Lebesgue integrable scalar field and we assume that
the action gets an extreme value at ¢(0). This way, the action in (5.0.1) becomes

S [0(0),do(0)], where
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S [6(a), dé(a)] = / (dd(a), d(a)) d*a (5.0.4)

:_/ B <d¢,d¢)—|—a<d¢,da>+%a2 (da,da)| d*z.  (5.0.5)
Q

To be able to carry on it is important to integrate by parts the middle term

—/<d¢,da>d4x:/*dgb/\da+d*dgb/\a—d*d¢/\a (5.0.6)
Q Q
:/ *dgzﬁ/\a—/d*dqﬁ/\a. (5.0.7)
o9 Q

Using this we can construct the functional derivative as we would a real derivative

dS|e,d S d — S1¢(0),do(0
do a—0 (6%
1
= lim {(*d* do,a) — —a(da,da) | d*z (5.0.9)
a—0 R4 2
:/ (xd x d¢, a) d*z, (5.0.10)
R4
and since the pseudo-inner product is non-degenerate' it follows that
*d*dp = 0. (5.0.11)
This, of course, is just the wave equation for the scalar field
i@—v%—o (5.0.12)
2 Ot? - o

!Although in this case it is a little obscene to talk about pseudo-inner products since both
*d x d¢ and a are scalars and (xd x dp, a) = a x d * d¢. However, this serves to illustrate the
Maxwell case.
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Now?, it is important to remark here the role played by the pseudo-inner-product

of Lorentzian geometry.

1. Both the Hodge star operator and pseudo-inner products (-, -) are explicitly
constructed in terms of the metric, which implies the of the equation of

motion is metric-dependent.
2. The volume measure is also constructed to be metric-compatible.

This is an integral part of Lagrangian descriptions of fields. In fact, in classical
mechanics it is usually overlooked that you only can construct Lagrangians because
you can take two velocity vectors and map them into kinetic energy. This is, of
course, not the case in neither Carrollian nor in Galilean geometry where there is

not a non-degenerate bilinear form.

At this point, you could multiply (5.0.12) by ¢? or make the transition to Carrollian
units and taking the limit ¢ — 0 or C' — oo to the same effect. Personally, I'll do

the latter for consistency

82

a—;f =0. (5.0.13)
This is Carroll invariant because neither 2 nor ¢ transform under Carroll. And
that’s it, right? The Carrollian limit of thesscalar field. Well, no. The free scalar
field admits two non-equivalent Carrollian limits, the so-called electric we just
obtained and the so-called magnetic one which can be obtained via Hamiltonian

formalism.

5.1 At the level of the Hamiltonian

Both electric and magnetic limits can be independently constructed from the
Hamiltonian formalism of free scalar field theory. The magnetic limit is obtained
by taking the limit ¢ — 0 in the action written in canonical variables. The electric

limit is obtained by doing the same after a convenient field reparametrization.

2Dear reader, if you're thinking I could’ve just used a coordinate description and be done with
it you’d be absolutely correct. However, you can’t stop me.
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We start by building the action in canonical variables, for doing so we must define

a—ﬁ. = i% We arrive to the Hamiltonian
c2 ot

action principle after performing the Legendre transformation

the canonical momentum density m =

oL . o, 1

Replacing this in the action allows us to separate the degrees of freedom into the

scalar field and its canonically conjugate momentum w

S, ¢ = /R4 d*z [mﬁ - H} (5.1.2)
= /R4 d'z {%279 - %ng : w} : (5.1.3)

The equations of motion in the Hamiltonian formalism for the scalar field are

oM 0 [ oM . oM 0 [ oH
A (8(8@)) °= 5 " om (a(aﬂr)) (5.1.4)

= V?¢ =T. (5.1.5)
By combining these two equations the wave equation is recovered.

5.1.1 Magnetic limit of the scalar free field

As was previously stated, the magnetic limit of free scalar field theory is recovered
by taking the limit ¢ — 0 in the action written in term of canonical variables

(¢, ), as was shown in ( )

Suilm, ¢] = — /]R diz HM, (5.1.6)

with Hamiltonian density given by
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HM =V V. (5.1.7)

Computation of the equations of motion gives as result

=V $=0. (5.1.8)

An important thing to consider in this case is that for any temporal slice, solutions
of the EOM will satisfy Laplace’s equation. In the previous chapter it was said
different kind of conformal field theories’ Carrollian limits may have different

k-level of Carrollian conformal symmetry. This is an example of such cases.

The following was obtained by the Lie point symmetry method, by considering
the space (F,,, 1, C*™!) with independent variables (s,x) and dependent variables

(¢, ) with projection map

m: F, — O (5.1.9)
(s,%,0,m) — 1 (s,X,0,7) = (8,%). (5.1.10)

These equations of motion are constructed from the extended tangent space of
Fn? and their symmetries include time translations, spatial translations®, spatial
rotations, spatial dilations, special conformal transformations, time dilations, field
dilations and an infinite sector that comes from there not being spatial derivatives
of the conjugate momentum. These symmetries were obtained by considering the

pair (5.1.8) as they stand.

Time translations have as generator the vector field Py € I' (T'F,,) given by

3Strictly speaking, the necessary math to properly talk about this machinery is that of jet
bundles. However, that’s beyond the scope of this work.

4Carrollian boosts were not obtained by this method although we know they are a symmetry of
this system of equations.
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0
Po= 5. (5.1.11)

The transformation for each generator X € I' (T'F,,) is built by the usual method.
Let p € F,,, = (S0, X0, o, To) be a point to serve as initial conditions for the system
of ordinary differential equations 4% (\) = X, x(), with curve YR — F,. A
solution to this system with initial conditions 4*(0) = p is denoted by ~;* ().

Symmetry transformations are then built by using the flows

At R x Fy — Fn (5.1.12)
A ) — BV (N f) =7 (). (5.1.13)

By doing this, time translations are recovered as a flow

™ R x Fry — Fom (5.1.14)
(A, 5,%,0,7) — W™ (N, 5,%x,0,7) = (s + \, X, 0, 7). (5.1.15)

Spatial translations have as generator the vector field P4 € I' (T'F,,,) given by

Py==—. (5.1.16)

Spatial translations are recovered as flows
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WP R x Fy — Fon (5.1.17)
(N, 8,X,0,m) — h" (N, 5,%,0,7) = (s,2+ Ny, 2,0,7) (5.1.18)
R72 R x Fry — Fim (5.1.19)
(A, 8,%,0,7) — h™2 (N, 5,%x,0,7) = (5,2, + \, 2,0, 7) (5.1.20)
R R x Fry — Fo (5.1.21)
(A, 5,%,0,m) — h™ (N, 5,x,¢,7) = (s, 2,9, 2+ \, 0, 7). (5.1.22)

Spatial rotations have as generator the vector field J4 € I' (T'F,,) given by

0
_ B
Ja = €apcr 9.0 (5.1.23)
Spatial rotations are recovered as a flow
h74 R X Fpy — Fim (5.1.24)
(A, 5,%,0,7) — h74 (X, 8,%,0,7) = (5, Ra(N\)X, $, ), (5.1.25)

where Ra(\) € SO(3) is the A-th rotation matrix of angle A. Details of this are

given a further in the text so it is not worth it to have them here.

Spatial dilations have as generator the vector field D € I' (T'F,,) given by

0 0
D=a— +2¢p—. 5.1.26
Space dilations are recovered as a flow
hP iR x F, — Fn (5.1.27)

(A, 5,%x,0,7) — hP (N, 8,%,0,7) = (5, e*x, e* o, 7T) . (5.1.28)
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Time dilations have as generator the vector field Q € I' (T'F,,) given by

0 0
=5— — Op—. 1.2
Q 55 d)é)qﬁ (5.1.29)
Time dilations are recovered as a flow
he R x Fry — Fim (5.1.30)
(A, 5,%,¢,7) — he (), 8,X,0,7) = (e’\s,x, e, 77) : (5.1.31)

Special conformal transformations have as generator the vector field Sy € ' (T'F,,)

given by

0 0 0
B— _— —_— —
al‘A 5.TA7Ta7T an¢ (5.1.32)

Sy = 2xAxBi — Tpx

oxB

The flow that serves as action of each special conformal transformation is

Wt R X Fop — Fon (5.1.33)
()‘7 S, X, ¢7 7T) — hSA ()‘7 S, X, (ba 77) - <S7 WA()‘) (X - HA()\)X . X) >QA()\)1/2¢: Ql ()\)5/277> .
(5.1.34)

Where 1y : R — R? with uy(\) = (,0,0), ua(A) = (0,A,0), uz(A) = (0,0, ) and
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(22 + 92 + 2%)
(€ = A(2? + 9%+ 2%)° + 42 + 22
(5.1.35)

Q) = (O =12+ My)? + (X)) wi(N) =

(22 + y? + 2%)
(y— A (22 4+ y2 4 22))? + 22 4 22
(5.1.36)

(2?2 +y* + 2%)
(2= M@+ 92 +22)" + 22 + 92
(5.1.37)

Remark: these are not the special conformal transformations that appear in

Carrollian electrodynamics, as can be seen in 7.1.3.

Field dilations have as generator the vector field W € I" (T'F,,,) given by

0 0

The symmetries associated to this generator are recovered as a flow

PV R x Fry — Fm (5.1.39)
(A, 5,x,¢0,7) — WY (N, 5,%,0,7) = (s,x, ero, e)‘7r) ) (5.1.40)

The remaining symmetry has as generator the vector field V,peq € I' (T'F,;,), where
a,b, c,d € Ny are natural numbers. This acts adding powers of space coordinates

and scalar field ¢ to the canonical momentum 7. These generators are given by

Vabea = x“ybchﬁdai. (5.1.41)
T

Symmetry transformations for each of them are recovered as a flow
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pYabed : R x Fy, — Fo (5.1.42)
()‘7 5, X, ¢7 W) — hyade (>‘7 5, X, ¢7 ﬂ-) = hyade (87 X, ¢7 T+ )\xaybchbd) .
(5.1.43)

This kind of transformation also appears in the Carrollian limits of both Maxwell

and ModMax theories and will be fully explained then.

It must be noted that although Carrollian boosts were not found by employment
of this method it is a symmetry of this limit and has generators K4 € ' (T'F,,)
given by

0
Ka=2az. (5.1.44)

With transformations written in terms of flow

R4 R x Fry — Fim (5.1.45)
(A, 8,%,0,m) — W (N, 5,%x,¢,7) = (5 + Az 4, X, b, 7). (5.1.46)

Furthermore, the infinite-dimensional extension of this is also a symmetry of this

x y c 9 ° ( )
;(le z s 5'1'1‘

Where a, b, ¢ € Ny are natural numbers. Symmetry transformations of these vector

fields are given by
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hTave - R x Frpy — Fom (5.1.48)
(A, 8,%, ¢, 1) — hTave (N, 5,%, p,7) = (s + Az%y’2%, %, ¢, 7T) ) (5.1.49)

5.1.2 Electric limit of the scalar free field

As was previously stated, for arriving at the electric Carrollian limit of free scalar

theory it is needed to first re-scale the canonically conjugate pair (¢, )

M|
Il
Q
3

-1
¢ = z¢~ (5.1.50)

In so doing, we transform the action principle as follows

- 1 2 ~
S [fr, ¢] - /R iz [5%2 . %w - Vqs] , (5.1.51)
so of course,
Spl7, 6] = lim S [MB} - /R d'a Bﬁ?}. (5.1.52)

The equations of motion in this case are 7 = ¢ and 7 = 0, which reproduce the

correct limit.

5.2 Electric and magnetic limits of a scalar field

with an analytic potential

If we include an analytic potential V(¢) = Zamgbm it’s clear that under
jeJ
redefinition of the field we must compensate the appearance of powers of ¢

in the series for the electric limit so we postulate
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a, =c"a,™, (5.2.1)
where a,,” is the previous m-th coupling constant to the m-th power, c is the

speed of light and «a, is the new m-th coupling constant.

This way we can construct the electric and magnetic limit of a self-interacting

scalar field as follows

Sylm, @] = — /W d*z [%ngﬁ Vo + V(¢)} (5.2.2)

Sglr, 6] = /R4 d*z BH — V(gzﬁ)} . (5.2.3)



61

Part 11

Maxwell theory, symmetries and

limits
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Chapter 6
Maxwell theory

The way we usually think about Maxwell’s equations is in their standard vector
calculus form. We see them and remember our dear Griffiths ( ), it’s

burnt into our retinas.

B
V.-B=0 VXE+88—t=0 (6.0.1)
1 0F

where B, E and J are R3 valued vector fields' and p is a real valued function. In
this work we are mainly concerned about vacuum Maxwell equations, which have

no sources. This is p = 0 and J = 0, therefore

B
V-B=0 VxE—l—%—tzo (6.0.3)
1 0F
E = B—-——=0. .04
\Y 0 V x 27 0 (6.0.4)

6.1 Symmetries

Maxwell theory has been studied from numerous approaches and one particularly

important is that of its symmetries. Although not immediately clear from the

n the vector calculus sense.
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equations of motion there are three symmetries involved in them:
e Poincaré symmetry both in the vacuum case and in the one with sources.
e Conformal symmetry in the vacuum case.
e Duality invariance in the vacuum case.

In what follows, the Lie point symmetry approach was used to compute these
symmetries by first solving an overdetermined system of PDEs to find those vector
fields that generate said symmetries and then using them to construct the flows
associated to them by solving for the integral curves’. Symmetries are grouped

according to natural subgroups of the total symmetry group.

We consider the fiber bundle (£, 7, M), where M is the four-dimensional Minkowski

space-time and 7 is the projection map

m:&—M (6.1.1)
(t,l’,y,Z,El,EQ,Eg,Bl,BQ,Bg) — (Zf,{E,y,Z) . (612)

For simplicity the notation x = (z,y, z), E = (E1, Fs, F3) and B = (B4, By, Bs)

will also be used in this work, an example of it would be writing (6.1.1) as

7:&— M (6.1.3)
(t,x,E,B) — (t,x), (6.1.4)

which helps clean up the notation. Equations of motion define a region O C & for

which symmetry transformations are endomorphisms.

6.1.1 Lorentz

Lorentzian symmetry consists on spatial translations, time translations, space

rotations and boosts as described in section 3.2. In the following, the action of

2By following this approach only the connected part to the identity can be recovered.
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this group on the electric and magnetic field is constructed. Spatial translations

have generators Py € T'E given by

Po=——. (6.1.5)
Let p € € be a point p = (tg, To, Yo, 20, £, ES, EY, BY, BY, BY) to be used as initial

conditions for the curve v, : R — & such that ~,(0) = p. Solving the system of
ODEs

() =P

AoPA Gy’ (6.1.6)

we find as the solution the unique curve -, that passes through the point p and

has tangent vector P4.,. We use this curve to construct the flows

RPA Rx & — & (6.1.7)
(A e) — hP4 (N e) == 7P4(N). (6.1.8)

By doing so, the flow for each spatial translation is constructed as listed below

h731 ()\,t,I,y,Z,ELEQ, Eg, Bl, BQ, Bg) = (t,.’E + /\7y, Z, El,EQ, E3, Bl, BQ, Bg)

(6.1.9)
W72 (A t,x,y, 2, By, By, B3, By, By, Bs) = (t, 2,y + \, 2, By, Fy, B3, By, By, Bs)
(6.1.10)
h7s (M t,x,y, 2, By, Ey, B3, By, By, B3) = (t, 2,9,z + \, B\, Ey, E5, By, By, B3) .
(6.1.11)

Time translations behave in much the same way as their spatial counterpart’.

The vector field generating this transformation is H € T'E

3Meaning they have no effect on the fields and they also act as an additive R-group.
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H=-Z (6.1.12)

The system of ordinary differential equations to solve in this case is

At ) = Homn)- (6.1.13)

This has a unique solution for initial conditions 7;{(0) = p which are used to

construct the flow as

M RxE— & (6.1.14)
(A, e) — ht (N e) ==~ (). (6.1.15)

Explicitly we have

hH ()\, t,.I‘, Yy, z, E17 EQ, Eg, B17 BQ, Bg) = (t + /\/C, xr,Yy,z, El, EQ, Eg, Bl, BQ, Bg) .
(6.1.16)

Rotations are also a symmetry of Maxwell equations, as is implied by stating they

are Lorentz invariant. They have generators® J, € TE given by

0 0 0
JA = €apc (.%B&C—C—FEB——FBB—). (6.1.17)

The system of ordinary differential equations to solve for finding how the finite

transformation associated with each J4 acts is

4Although the presentation of these symmetries has been shown from the lens of solving
differential equations, it is important to remember to infer how they act based on how the
vector looks. In this case it can be concluded both space and fields get rotated in the same way.
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W) =Ty a0 (6.1.18)

This has a unique solution with initial conditions ~;/4(0) = p, which is used to

construct the flows

T4 Rx & — & (6.1.19)
(A, e) — 74 (A e) == 774 (N). (6.1.20)

For the first angular momentum generator we have the action of a rotation with

respect to the x-axis

h (N t,x,y, 2, By, FEy, E3, By, By, B3) = <t, T,y Ccos A+ zsin A\, zcos A — ysin A,
Ey, Eycos A+ Ezsin A\, F3cos A — Essin A,
B, Bycos A+ Bssin A, B3 cos A — By sin )\).
(6.1.21)

For the second angular momentum generator we have the action of a rotation

with respect to the y-axis

2 (\t,x,y, 2, By, By, B3, By, By, Bs) = <t, TCOSA — zsin A, y, z2cos A\ + xsin \,
Eicos A — Essin A, By, F3cos A+ Ejsin A,
B; cos A\ — Bssin A\, By, B3 cos A + Bj sin A).
(6.1.22)

For the third angular momentum generator we have the action of a rotation with

respect to the z-axis
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hs (N t,x,y, 2, By, Fy, E3, By, By, B3) = <t,xcos)\ 4+ ysin A, ycos A — xsin A\, z,
Ejcos A+ Eysin \, Eycos A — By sin A, B,
Bicos A+ Bysin A\, Bycos A — By sin A, Bg).
(6.1.23)

The remaining part of the Lorentz group are boosts K4 € TE that generate

Lorentz transformations in the total space £. These generators are given by

(6.1.24)

The system of ODEs to solve in order to build the transformations that come

from the generators of boosts is

(N =K, NITRS (6.1.25)

The unique solution of this system of equations with initial conditions ’y;,CA(O) =p

is used to construct the flows that serve as the action of boosts

WA Rx & — & (6.1.26)
(A, e) — R (X e) i= 784 (). (6.1.27)

Just as it was seen in a previous chapter, boosts act as hyperbolic rotations on
space-time. They act on the fields in much the same way. The flow of the first

boost is given by



68 6.1. Symmetries

x sinh A

WY (N t,x,y, 2, By, Fa, Es, By, By, Bs) = <tcosh)\ + ,xcosh A+ ctsinh A, y, 2,

E4, E5cosh A+ ¢Bssinh \, E3 cosh A — ¢Bs sinh A,

B3 sinh A Fy sinh \
B]_aBZCoslfl)\—&’Bzgcosh)\_F&)7
C

(6.1.28)

Cc

the flow of the second boost is given by

ysinh A

W2 (A t,,y, 2, By, Fy, B3, By, By, Bs) = <t cosh A + ,x,ycosh A + ctsinh A, z,

Ei cosh A — ¢Bssinh A\, By, E5cosh A 4+ ¢Bj sinh A,

F, sinh A F, sinh A
Blcosh)\—l—lsL,Bg,Bgcosh)\%—lSL),
C

(6.1.29)

C

and the flow of the third boost is given by

zsinh A

W (M, t, 2,1, 2, Ev, By, By, By, By, By) = <t cosh A + 2.y, zcosh A + ctsinh A,

E; cosh A\ + ¢Bysinh A, E5 cosh A — ¢By sinh A, Ej3,

E5sinh A E; sinh A
BlCOSh)\—&,BQCOSh)\—F&,Bg).
c

(6.1.30)

As stated previously, each transformation corresponds to a 1-parameter subgroup
with parameter A € R. The action of these transformations can be characterized

by defining endomorphisms

hy : & — & (6.1.31)
e — h*(\e). (6.1.32)
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For any generator X and real number A\. Composition of such functions forms a
group and, in this particular case, an action of the Poincaré group ISO (3,1).
6.1.1.1 Space-time restriction

A representation of the Poincaré group ISO (3,1) is recovered by taking the

projection of all endomorphisms defined in the previous section, with

hiA = 7o hiA (6.1.33)
R =moh} (6.1.34)
Wit =mohs (6.1.35)
hiA = 7o Wi, (6.1.36)

where the generators of space-time symmetries can be obtained from the

pushforward of the projection map

Py=mPs= % (6.1.37)
H=mH= %% (6.1.38)
Jay =7 Ta = EABCan;iC (6.1.39)
Ka=mKs= cta% + %“% (6.1.40)

This procedure will be used to take the space-time restriction of symmetries found

in Carrollian limits.

6.1.2 Conformal

Space-time dilations are also a symmetry of Maxwell equations without sources,
much in the same way as in the wave equation case. Space-time dilations have

generator D € T'E given by



70 6.1. Symmetries

0 0
_ A -~
D=a's st (6.1.41)

The system of ODEs we need to solve to construct how space-time dilations act is

Yo (A) = Dypiny- (6.1.42)
This has unique solution with initial conditions 7pD (0) = p which is used to

construct the flow

P RxE&—¢& (6.1.43)
(A, e) — hP (A e) i =P (). (6.1.44)

Explicitly, space-time dilations are given by”
]’LD ()\, t, xr, Y,z El, EQ, Eg, Bl, BQ, Bg) = (e’\t, 6)\1’, BAy, 6)\2, El, EQ, Eg, Bl, BQ, Bg)
(6.1.45)

Field dilations are also a symmetry of Maxwell’s equations, with generator W € TE

given by

0 0
_ A A
W=FL B <+ B 954" (6.1.46)

5This is a point where it would be useful to remind you, dear reader, we are only recovering the
connected part to the identity.
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The system of ODEs we need to solve to construct how space-time dilations act is

3 () = Wiy, (6.1.47)

This has unique solution with initial conditions 7;,/" (0) = p which is used to

construct the flow

WY (\t,x,y, 2, B, Eo, E3, By, By, B3) = (t,2,y,2,¢ Ey, " Fy, e E3,¢* By, ¢*Bs, ¢ Bs) .
(6.1.48)

Special conformal transformations were also found to be a symmetry of Maxwell’s
equations but are not presented here because their explicit form is quite
complicated and showing them would not serve advance any understanding on

the subject.

6.1.3 Duality

All symmetries so far have involved space-time. However, there is one that do not

involve them. This one being duality invariance with generator U € TE given by

0 EA 9
= B — 4+ — 1.4
U B ora + B4 (6.1.49)
The system of ordinary differential equations to solve is
) = Usg - (6.1.50)

This has unique solution with initial conditions ’yg’ (0) = p which is used to

construct the appropriate transformation via flow
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M RxE— €& (6.1.51)
(N e) — W (N e) ==~ (N). (6.1.52)

Explicitly, duality transformations act as the action of the rotation group in the
(E, B) pair

1
(Nt xy, 2, E,B) = (t,x,y,z,Ecos/\—chinA,Bcos)H——Esin)\) )
c

(6.1.53)

6.2 Lagrangian formulation

Vacuum Maxwell equations come from two different places. Half of them are a
consequence of considering electrodynamics as a gauge theory of the group U(1)
with curvature F'°. The other half are the equations of motion derived from the

action principle over a region of Lorentzian space-time 2 C M

S[A, dA] — % /

1
F/\*F:——/ (F,F)uw,. (6.2.1)
Q 2 Q

6.2.1 First pair of equations: the Bianchi identity

The tensor F' = dA is a real valued U(1) curvature for the connection 1-form A,

with

6Since U(1) has no group index, there’s no need to take the trace of F' A xF.
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A=—¢dt + Aydr + Aydy + A.dz (6.2.2)
(% 09 3¢
F = dt A dx — 4+ — | dtNd dt Nd
<8t 390) " +(a +8y> A‘”(at az) haz
(6.2.3)
0A, 0A, 0A, 0A, 04, 0A,
—i—(ay 8z>d ANdz + (ax—az>d:§/\dz+(ax 8y)d A dy
=—FE,dt Nde — Eydt Ndy — E.dt Ndz + By dy Ndz — B, dx ANdz + B, dx N\ dy
(6.2.4)
—E Adt+ B. (6.2.5)

Now, this has matrix elements’

0 —-E,/Jc —E,/Jc —E./c

E, 0 B, —B
v = /e Yl (6.2.6)
Ey/C —Bz 0 Bm
E.)Je B, -B, 0
For a U(1) theory, the Bianchi identity is expressed as
dsF =dF = ddpA=ddA=0 (6.2.7)
0E, OE, OE, OE,
== — dt Ndx A dy — - dt Ndx Nd
( Ox oy ) vaa ( 0z Ox ) v
(8E aE)dt/\aly/\dz
0z
8Bz «
( az)dm/\dy/\dz 5
_ 0B 2
6.2.8
ot ot ( )

"Taking 2° = ct.
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Using linear independence and regrouping terms we arrive at

OB
V-B=0 VxE+ 5 =0 (6.2.9)

The second pair of Maxwell equations come from an action principle, for which it
is convenient to compute the Hodge dual F = «F. This is carried over by using

our previous definition as

1
b= éeﬂwwsuﬂ]mwTIMVQFVWde#S A dxt, <6'2'1O>

this has matrix representation given by

0 -B, -B, -B.
B, 0 E./¢c —E,/c
B, —E.Jc 0  Ejc
B. BE,Jc -EgJc 0

(A F ) = (6.2.11)

Note that if we perform two consecutive Hodge star operations we arrive at the

same fields but multiplied by minus one.

6.2.2 Second pair of equations: Lagrangian’s EOM

While the first pair of Maxwell’s equations come from a Bianchi identity for a
U(1) theory and must be satisfied if we wish to claim to be working in a gauge
theory setting, this is not the case for the second pair, which are derived from a

particular Lagrangian. Namely

S[A, F| = / %F/\ WF— AN, (6.2.12)
Q
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Where 2 C M is a closed submanifold of Minkowski space-time®.

This action principle can, of course, be written in quite different ways. One that
works quite well for showing Lorentz invariance comes from using the defining
property of the Hodge dual ( ) to rewrite the previous equation. Let

wg be the volume form associated to the Lorentzian metric g, then

S[A, F| = /Q —% (F, Y, + (A, J) w,, (6.2.13)

where (-,+) : Q2 (M) x Q? (M) — C>* (M) is a SO(1, 3)-invariant pseudo inner
product. It is clear then that this is, by construction, Lorentz invariant.

We take the connection A to be such that the action takes an extremal value. We

then consider a one parameter family of connections

Ala) == A+ aa. (6.2.14)

This way, A(0) = A extremizes the action. We construct the functional derivative
in an analogous way as in ( ). First, we take the following

difference

S[A(a)] — S[A(0)] = / —% (F + ada, F + ada) w, + (A + aa, J) w,

_ / _% (F,F)w, + (A, J)w, (6.2.15)
1

= a/Q —(F,da) wy + (a, J) wy, — §a2 /Q (da,da) w,. (6.2.16)

Next, we divide by a # 0 and take the limit a« — 0

8This requirement is not strictly necesssary and is often dropped.
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d‘z([lA] (0) - g}i% S[A(Oé)] ; S[A(O)] (6217)
:/Q(_ (F,da) + (J,a)) w, (6.2.18)
:/*F/\da—*J/\a+d>x<F/\a—d*F/\a (6.2.19)

Q
—/@Q*F/\a—/ﬂ(d*F—i—*J)/\a. (6.2.20)

Now, since we are physicists we are blind to boundary terms’. Also, a is an

arbitrary 1-form so for the action to have an extremal value we need

dx F+xJ =0. (6.2.21)

This can also be seen if we write

dS[A]
do

(0) = —/Q<d*F+*J,a>wg. (6.2.22)

The bilinear form (-, -) is non-degenerate, so d * F' + *J must be 0. Notice here
the way we arrived at the equations of motion is unique, the reason for that is the
explicit presence of A in the Lagrangian. If it weren’t for it we could have carried

this procedure in two different ways, as I'll show in the section on duality.

6.3 Hamiltonian formulation

Hamiltonian formulations of gauge theories must be done carefully because they

are constrained systems. Bianchi’s identity

9This is not exactly true. There are plenty of instances where boundary terms are relevant,
specially when considering physics of materials, which in electrodynamics is quite a relevant
area since it has direct impact on how we transmit signals.
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dyF =0 (6.3.1)

implies that not all of configuration space is accessible and, therefore, not all
of phase space is accessible and we must deal with this. Standard procedure
is Dirac’s, who presented a systematic way of extending the Hamiltonian with
Lagrange multipliers in ( ) so that the equations of motion obtained
from the extended Hamiltonian coincide with those obtained from the Lagrangian

formulation.

Maxwell’s Hamiltonian is constructed as usual. First we use it’s Lagrangian to

build the canonical momenta

oL 1
“— = — __F° 3.2
T A z (6.3.2)
Since E = —A — V¢, we can solve for A as follows
A= -V (6.3.3)

Notice there’s no appearance of gz5 in the Lagrangian, so we have the restriction
7% = 0. In Dirac’s jargon this equation is referred to as a primary constraint. We

will come back to this equation later.

Now the Lagrangian must be expressed in terms of canonical variables. To do this

it is quite convenient to separate the Lagrangian density as follows

1 v
L= —ZF" F. (6.3.4)
1 [/ E?
== — B? 6.3.5
! ( . ) (6.3.5)
]' 2 _a 1 ab
= —c*mn, — ~F*F,. (6.3.6)

2 4
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With this, we get the following Hamiltonian

H= / m- A — L] dPx (6.3.7)
Q
1 2__a 1 ab 3
H = —c'mmy + - F"Fy —w-Vo| d’x. (6.3.8)
P 4

At this point it is convenient to integrate by parts the last term. The objective of
this is twofold, firstly we can see more clearly how the scalar field behaves in the

Hamiltonian and secondly it makes it easier to arrive at Gauss law. This yields

1 1
H = / {587#% + ZF“”Fab + ¢V - w} d>x. (6.3.9)
Q

The equations of motion for the field ¢ that come from this Hamiltonian are

. OH 0 OH
®= 5 i (a@wo)) =0 (6.3.10)
and
o_ OH 0 ( OH
"= =5 + 357 (a(aj(p)) (6.3.11)
=-V-T. (6.3.12)

Taking (6.3.10) and (6.3.12) we arrive at the usual Gauss equation

-V-mw=0 (6.3.13)

1
SV-E=0. (6.3.14)

But equation (6.3.10) can’t be right since it implies there’s no time variation for
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the scalar potential. This inconsistency comes, as has been pointed out, from the

fact that variations are restricted by Bianchi’s identity.

The equations of motion for the vector potential are obtained next

. OH 0 ( OoH
A= om0 (a(aﬂa)> (6.3.15)
= 1, — Ou, (6.3.16)

this is just a restatement of the definition of the canonical momentum 7% in (6.3.2).

The last equation is

oH 0 [ oH
T4 = — | — 3.1
T o4, o (8(81»14&)) (6:3.17)
. a 8 Imk
-2 (Bk T alAm) (6.3.18)
| 9E° )
e =~ (VX B)". (6.3.19)

Rearranging terms we obtain the Ampere-Maxwell equation

VxB-—-=_=0. (6.3.20)

Equations (6.3.16) and (6.3.20) together with those from Bianchi’s identity form
the four equations of Maxwell’s electrodynamics. However, we must deal with the
inconsistency we encountered. As has been pointed out a number of times, we
need to use Dirac’s formalism. In Dirac’s jargon, equation 7° = 0 is a primary

constraint and equation (6.3.16) is a secondary constraint'’.

To include these constraints in the formulation, the use of Lagrange multipliers is
needed. We define the extended Hamiltonian H* as

10Known as the Gauss constraint. The requirement that this constraint is preserved in time
gives rise to the conservation of electric charge.
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H® : = H+/ AV-7m+ @7 d’x (6.3.21)
Q

1 1
:/ {Eczﬂa%ﬂF%Faw(Mﬂ) Vert@n'|dx. (6.3.22)
Q

Where @ and f are Lagrangian multipliers. As Zangwill shows in ( ),
this Hamiltonian reproduces the appropriate equations of motion and it can be

proved that these Lagrange multipliers are responsible of Gauge-fixing.
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Chapter 7

Carrollian limits

7.1 At the level of the equations of motion

The first appearance of Carrollian limits in the literature were taken directly from
the equations of motion by appropriate previous redefinition of the fields so said

limits exist'. We shall reproduce this approach here and answer the question
What are all the symmetries of these limits?

So far, all theories have two distinct limits called magnetic and electric referring
to the electromagnetic case. We shall start exploring the Carrollian magnetic

limit of Maxwell’s equations.

7.1.1 Magnetic limit

We consider vacuum Maxwell’s equations written in a slightly different fashion

which is useful for taking the Carrollian limits

0B
OF

From this, it is possible to arrive at the correct limit by simply considering

1See ( ), for example.
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¢ — 0. However, let us use Carrollian field and time reparametrizations given by
B = (C/c) By,, E = E,, and s = (cC) t, respectively.

0B,

V x E,, +C* 55 =0 V-E,=0 (7.1.3)
E
(cC) (—v x B+ 668’“) =0 V-B,, =0. (7.1.4)

The Ampere-Maxwell equation is multiplied by a (cC' )_1 factor and the Faraday
equation by a C~2 factor. Then the limit C — oo is taken, arriving at the

Carrollian magnetic limit of Maxwell’s equations

OEm,

V x By — =5 =0 V- -En=0 (7.1.5)
OB,

= B, = 0. 1.

5 =0 v 0 (7.1.6)

These equations are known to be invariant under the flat Carrollian group,
consisting of time translations, spatial translations, spatial rotations and Carrollian

boosts.

Neither time translations nor space translations come with field transformations.
Rotations act in the same way as in every other vector field, Carrollian boosts in

the magnetic limit act as

B,.(z,s) = B, (z,s) = By(x,s — b-x) (7.1.7)
E,(xz,s) = E! (x,s) = Ep(x,s —b-x)+bx By, (x,s—b-z). (7.1.8)
These are, however, not all symmetry transformations of this system of differential

equations.
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7.1.1.1 Symmetries of the magnetic limit

The approach taken to obtain the symmetries of this system of differential equations
is that of Lie point symmetries, which requires thinking of differential equations
as conditions taking place in a space which contains both independent variables
(s,x) and dependent variables (E, B)’. Let (&, Tm, C*™) be the fiber bundle

with base space C3*! and projection map

Tt E — C3F1 (7.1.9)
(s,x,E,B) — 7, (s,x, E, B) := (s,%), (7.1.10)

whose tangent bundle T'E,, is used to construct the equations of motion. The
EOM define a region of the tangent bundle that is formed by solutions of the
system. Symmetry transformations are endomorphisms on T&,, that also are

endomorphisms on these regions.

The Lie point symmetry method, as described in ( ) and summarized
and exemplified in appendix A, was used to generate the set of partial differential
equations which has as solutions the vector coefficients that generates the
symmetries of the system. These solutions were found by employment of
polynomial expansions given said system is highly overdetermined. The families

of vectors are identified as follows.

The Carrollian magnetic limit of Maxwell theory is invariant under spatial

translations, with generators P4 valued in the tangent space T'E,,

Py= —. (7.1.11)

Each of them generates a one-parameter subgroup of transformations that can be
found by constructing the flows associated to each P4. Let v be a curve on the

total space &,

2Where the m subscript has been dropped for simplicity when displaying formulae. This should
not be a cause of confusion since all maps and space are adequately labeled.
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iR — En (7.1.12)
A — y(N). (7.1.13)

For v to be an integral curve of P4, the following system of ordinary differential

equations must be satisfied

F(A) = Paron- (7.1.14)

For each value of A we get one solution that is used to build its corresponding

flow by explicit use of the integral curves ~

P R x &, — &,
(N, s,x,E,B) — h™* (\,s,x,E,B) := (s,x + \,y, 2, E, B)
A7 iR X & — Em
(A, s,x,E,B) — h™ (\,5,x,E,B) := (s,z,y + \, 2, E, B)
P2 R x &, — En

(\,s,x,E,B) — h™ (\,s,x,E,B) := (s,z,y,2 + \, E, B).

7.1.15
7.1.16
7.1.17
7.1.18
7.1.19
7.1.20

o~ o~ o~ o~ o~ o~
~— ~— ~— ~—t ~— ~~—

These transformations can be summarized as follows

PR3 % & — Em (7.1.21)
(A, 5, x, E,B) — h” (\,5,x,E,B) := (s,x + A\, E, B). (7.1.22)

We see that spatial translations affect neither of the fields. This is consistent with

what we already knew from previous works®.

3And from basic field theory. Were we to find field transformations coming from finite translations,
we then would have known a mistake had taken place.
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It is also customary to write flows as endomorphisms by defining

hy & — Em (7.1.23)
e — hy (e) :== kY () e). (7.1.24)

Time translations are also a symmetry of this limit, with generator given by

H=o (7.1.25)

The following system of ODZEs is solved to construct the appropriate transformation

¥ (A) = Hyn)- (7.1.26)

Solving this we can use the curve vy to construct the flow

Wt R X Ep — Em (7.1.27)
(A, s, x, E,B) — b’ (\,5,x, E,B) := (s + \,x, E, B). (7.1.28)

Notice in both these cases the transformations do not affect the values of the fields
but only the space-time part. That is not the case for rotations. The generators

Ja of rotations in &, are

0 0 0
JA = €aBc (ZL‘B&C—C—FEBaE—C—l-BBa'ﬁ) . (7.1.29)

As usual, solving for the integral curves is a necessary step for building the

transformations
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Y (A) = Tayn- (7.1.30)

The solution of this system of ODEs with initial values is used to construct the

flows. Each of them is a map

R4 R x &, — Em (7.1.31)
(A, s,x, E, B) — h74 (\,5,x,E, B), (7.1.32)

with

(N s,x, E,B) := (s,x,ycos)\—l—zsin)\,zcos)\ — ysin A,
By, Eycos A+ Essin A, E5cos A — Essin \,
Bi, Bycos A\ + Bssin A, B3 cos A — By sin )\), (7.1.33)

where it is possible to identify from this a rotation of angle A with respect to the

x-axis; the second is given by

h2 (\,s,x, E,B) := (s,xcos)\ — zsin A, y, zcos A + xsin A,
Eicos\ — Essin A\, By, F3cos A + Ej sin A,
B cos A — Bysin \, By, B3 cos A + By sin A), (7.1.34)

which in this case it corresponds to a rotation of an angle A with respect to the

y-axis; the third one is given by
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73 (X, s,x, E,B) := (s, TCoSA+ysin A, ycos A — zsin \, z,
Eicos A+ Eysin A, By cos A — Fysin A, Es,
Bicos A+ Bysin A\, By cos A — By sin A, Bg), (7.1.35)

which, unsurprisingly, is a rotation of angle A with respect to the z-axis. The

three spatial rotations can be summarized in the following function

7 SO3) x En — En (7.1.36)
(R,s,x,E,B) — h7 (R,s,x,E,B) := (s, Rx, RE,RB) , (7.1.37)

where SO(3) stands there as the connected part to the identity of the orthogonal
group in three dimensions. Up until this point we already knew how the symmetries

acted on both space-time coordinates and the electric and magnetic field.

In turn, the vector fields Ty, with a, b, ¢ € Ny are a generalization of Carrollian

boosts. For each value of a, b and ¢ we have

0 oxy2¢ . 0
— — B :
9s KT gyl OEK

Tabe = T9y°2° (7.1.38)

Solving the system of ODEs that require 7T, to be the tangent vector to a curve

Y

Y (A) = Tavery(n)- (7.1.39)

We use the solutions to construct the 1-parameter subgroup of transformations

given by the flow
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hTeve - R x &, — Em (7.1.40)
(A, s,x, E, B) — h'ac (X, s,x, E, B) := (s + Az%y’z¢, x, E — \V (x“ybzc) x B, B) .
(7.1.41)

Computing the successive application of hﬁgz, where A\, are the parameters of

each T, we get a power-series expansion”

fa,y,2) = > Aaer"y’z, (7.1.42)

a,b,ceNp

which means this infinite sector corresponds to an action of the additive group

(C* (R3),+). It is possible and convenient to summarize this as

hT O™ (R?) X &n — En (7.1.43)
(f,s,x,E,B) — h7 (f,s,x,E,B) := (s + f(z,y,2),x, E—Vf x B,B).
(7.1.44)

This infinite-dimensional sector of the symmetry group corresponds to
supertranslations in Carrollian time s and has Carrollian boosts as a subgroup by

restricting f € C* (R?) to be a linear function”.

Space dilations have also be found to be a symmetry of the magnetic Carrollian

limit of Maxwell theory, with T'E,,-valued generator D given by

0 0
_ A A
D=z A—l—Ba =

- (7.1.45)

The system of ODEs to solve is the following

4Assuming convergence because why wouldn’t we.

Notice with this the function responsible for the symmetry becomes f(x,y, 2) = bjz+boy+b3z =
b-x for b € R? and Vf = b, which completely recovers the known symmetry transformation of
magnetic Carrollian electrodynamics under Carrollian boosts.
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¥ (A) = Dy (7.1.46)

Using the solution to this, flow AP is constructed

AP R X & — Em (7.1.47)
(A, 5,x, E,B) — hP? (\,5,x, E, B) := (3, eAx,E,e)‘B) ) (7.1.48)

In the same fashion, time dilations were found to be a symmetry of this limit.
Notice there’s a difference in sign in the part responsible for transforming the

magnetic field
0 0
=s—— BA—. 1.4
¢ *8s oBA (7.1.49)

You may be wondering, dear reader, how to approach the problem of constructing
the associated transformation for time dilations Q. This is quite clearly a problem
we have never in our lives tried to solve before. Requiring 7 to have tangent

vectors given by Q allows to construct the transformations, this is

¥ (A) = Q- (7.1.50)

Using the solutions to this system of ODEs the flows are built

he R x Ep — Em (7.1.51)
(A, s,x, E,B) — h?(\,5,x, E, B) := (eAs,x, E, e_)‘B) . (7.1.52)

Special conformal transformations are also a symmetry of this set of EOMs, with

generators Sy € T'E,, given by
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0 0 0
=2 B2 452 ) —apaP—— 1.
Sa A (x 9E +883) TRT E, (7.1.53)
0 0 0 0
— 4o By + 207 (Epe — By | — 2 B —— 1.54
vakuggs T ( A9, J@EA> seaB g (1154
0 J 0 0
Solving the usual set of ODEs
Y (A) = Saqym, (7.1.56)

the flows are constructed. For each value of A we get a 1-parameter subgroup

represented by its corresponding flow

A4 TR X Ep — Em (7.1.57)
(A, s,x, E,B) — h°4 (\,s,x, E, B). (7.1.58)

For simplicity in the expressions, let us define

2 2 2
wa(A) = vry T (7.1.59)
(= A (22 +y? +22))" +y? + 22
2 2 2
wy (V) = il e (7.1.60)
224 (y— A(22+y?+22))" + 22
2 4+ y? + 22

w,(A)

= 3 (7.1.61)
2+ 2+ (2 = AN(22 +y? + 22))

For convenience, let us also define the accompanying factors
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Q) = Az — 1) + X (y* + %) (7.1.62)
Q,\) = Ay —1)2+ 22 (27 + 22) (7.1.63)
Q) = Az =12+ N2 (a2 + 7). (7.1.64)

Using these factors we can write two families of matrices that characterize the
action of special conformal Carrollian transformations act on the electric and

magnetic field. The first family of matrices is T 4()\), where each one is given by

A(Aa? =2z — A (y2 +22)) +1 2 y(Az — 1) 2 z(Az — 1)
Tz (N) = Qz(N) ( =2 y(Az — 1) A2 (22 —y2+22%) — 22z + 1 —2\%yz )
—2Xz(Az — 1) —2X%yz A2 (22 +y?2—2%) 22z +1
(7.1.65)
A (=22 +y?+22) -2y +1 =2 z(Ay — 1) —2X%z2
Ty(A) = Qy(N) ( 22 z(Ay — 1) A=A (@2 +22) + 22 —2y) + 1 22z(Ay — 1)
—2X\%z2 —2xz(Ay — 1) AN (22 +y2-22) -2y +1
(7.1.66)
A2 (=22 + 92 +2%) — 22z +1 —2X\2zy —2xz(A\z — 1)
T.(A) =Q2(N) ( —2X\2xy AN (22 —y?+22) —22z+1 —2xy(Az —1) )
z(Az — 1) 2y(Az —1) A(z(Az—2) = A (22 +9?)) +1
(7.1.67)
The second family of matrices is Q4 (), with
0 2\%sz —2\%sy
O,(N) =2 (N) | 2M\%s2 0 —2XAs(Ax — 1) (7.1.68)
—2X\%sy 2XAs(Ax — 1) 0
0 —2X%s2 2Xs(A\y — 1)
O, () = Qy(N) —2)\%sz 0 2\%sx (7.1.69)
—2Xs(Ay — 1)  2X\%sz 0
0 —2XAs(Az —1) 2X\%sy
0.(A) = %(\) | 2As(Az — 1) 0 —2A%sz | - (7.1.70)
2225y —2\%sw 0

These matrices have two important properties that will serve in the Carrollian

|
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magnetic limit of ModMax theory that are relative to the R3-inner product

(Ta(Na) - (Ta(N)b) = QN)'a-b  (Ta(Na)- (0a(N)b) =0.  (7.1.71)

This way, the flow of each special conformal transformation is

RS (N, 5,%, E, B) = (wy(N\)s,wa(\) (2 — Ax - X) , we (N, we ()2,

Ti(N)E + O:;(\)B, T (\)B) (7.1.72)
B (05,5, B, B) = (10030, (V) 0, () (5 — Ax - %),y (V) 2

To(N)E + O2(N)B, Ty(N)B) (7.1.73)
hS (N, 5,%x, E, B) = (w,(\)s, w.(Nz, w,(Ny, w.(\) (2 — Ax - x) ,

Ts(A\)E + O3(\) B, T3(\)B) . (7.1.74)

From now on, the transformations concern solely the electric and magnetic field
and leave invariant the space-time part. The first of such transformations is a

field dilation with generator given by

9 9
A A
W= B + B (7.1.75)

The system of ODEs that determine how the transformation behaves is

Y (A) =Wy (7.1.76)

We use the solutions to this equations to give form to the transformation via flow

PV R x & — En (7.1.77)
(A, s,x, E,B) — "W (\ s,x,E,B) = (s,x,¢"E,e*B). (7.1.78)
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It was seen in Maxwell theory that there was a vector field responsible for duality
transformations. Magnetic Carrollian Maxwell theory has an equivalent to that

vector field, only it does not produce rotations but rather boosts and it is given by

=-B* —. 1.
U A (7.1.79)
Solving for v in
¥ (A) = Uy, (7.1.80)
we construct the transformation as a flow
MR X Ep — Em (7.1.81)
(A, s,x, E,B) — " (\,5,x, E,B) := (s,x,E — \B,B). (7.1.82)

Notice in contrast with the Lorentzian case, here there’s no rotation in the (E, B)
pair but rather a sum. This means duality transformations are not a symmetry of

the equations of motion®.

7.1.2 Electric limit

Maxwell theory admits two Carrollian limits, one of them being the already
shown magnetic one, characterized by the magnetic field not transforming under
Carrollian boosts. The remaining one is the electric Carrollian limit, which will

be developed in what follows.

We start from the Carrollyfied Maxwell equations

6This is also a known result, duality transformations as understood in Lorentzian geometry act as
maps between the electric and magnetic limits in both Carrollian and Galilean electrodynamics

(2014c)
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oB

1 OF
——VxB+Z - "B=0. 1.84
CQVX +35 0 \Y% 0 (7.1.84)

And simply take the limit C' — oo so we arrive at the electric limit of Carrollian

electromagnetism
0B
oFE
— =0 -B=0. 7.1.86
P \ ( )

This system of equations of motion is invariant under action of the flat Carrollian
group, namely time translations, space translations, space rotations and Carrollian
boosts. Time and space translations do not change the electric and magnetic field,

rotations act in the expected and usual way and Carrollian boosts act as’

E.(x,s) —» E.(x,s) = Es(xz,s — b-x) (7.1.87)
B.(x,s) = Bl(x,s) = Be(x,s —b-x) —bx E,(x,s — b-x). (7.1.88)

7.1.2.1 Symmetries of the electric limit

This limit is expected to have the same symmetries as its magnetic counterpart
but with slightly different actions resulting from the difference in sign in one
relevant equation®. To find precisely said actions the Lie point symmetry method
was employed. Let (&, m., C*™!) be the fiber bundle with base space C**! and

projection map

"It was mentioned before but a good way of remembering which limit is which is thinking of
what field does not transform under boosts.
8Recall, also, that duality transformations swap between the limits.
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T 1 Eg — C*T1 (7.1.89)
(s,x,E,B) — 7. (s,x,E, B) := (s,%), (7.1.90)

whose tangent bundle is used to construct the equations of motion. Just as
in the previous case, we obtained a system of highly over-determined partial
differential equations which were solved polynomially. These polynomial solutions
corresponds to components of vector fields that serve as generators of symmetries

of the equations of motion from which they were constructed.

As we already knew, space translations are a symmetry of this limit

0
= —. 1.91
Pa 9 (7.1.91)
Solving the following system of ODEs
FA) = Payon, (7.1.92)

the flows are constructed

PR x E, — &, ( )
(A, s, x, E,B) — b (\,5,x,E,B) := (s,v + \,y, 2, E, B) ( )
A2 R x & — &, (7.1.95)
(A, s,x, E,B) — h™ (\,5,x,E,B) := (s,z,y + \, 2, E, B) ( )
A Rx & — &, ( )
(A, s,x, E,B) — b3 (\,5,x,E,B) := (s,1,y,2 + A\, E, B), ( )

which can be written in a more compact way as
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Y R x &, — &, (7.1.99)
(A, 5,x,E,B) — h" (\,5,x,E,B) := (s,x+ X\, E,B). (7.1.100)

The time translations generator H € T, is the same as in the magnetic limit

H=— (7.1.101)

That means the system of ODEs to solve is the same

¥ (A) = Hyn, (7.1.102)

and the flow constructed from its solutions are also the same

PR xE — &, (7.1.103)
(A, s,x, E,B) — h* (\,5,x, E,B) := (s + \,x,E,B) . (7.1.104)

This is also the case for all three generators of rotations J, € TE,, which has to
serve as a consistency check. For had this not been the case, there would have

been at least one vector field” that would have transformed wrongly

9, 9, 9,
= S +FB—4+B— ). 1.1
Jr = €k (:E K + 0Ex + 8BK) (7.1.105)

The system of ordinary differential equations to solve is

9n the vector calculus sense.
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Y (A) = Tay0n- (7.1.106)

Solutions of this system are used to build the appropriate symmetry

transformations as flows
T4 R x &, — &, (7.1.107)
(A, s,x, E,B) — h74 (\,s,x, E, B), (7.1.108)
with the first being a rotation of angle A with respect to the x-axis
(N s,x, E,B) := (s,x,ycos)\ + zsin A, zcos A — ysin A,

Ey, Eycos A+ Essin A, E5cos A — Essin \,
By, Bycos A + Bz sin A, B3 cos A — By sin )\), (7.1.109)

the second being a rotation of angle \ with respect to the y-axis
(), s,x, E,B) := (s,xcos/\ — zsin A\, y, zcos A + xsin A,

Eicos\ — Essin A\, By, F3cos A+ Ejsin A,
Bjcos A\ — Bssin A\, By, B3 cos A + By sin A), (7.1.110)

and the third being a rotation of angle A with respect to the z-axis
3 (N, s,x, E,B) := (3, T COSA+ysin A\, ycos A — xsin \, z,

Eicos A+ Eysin A, Escos A — Eysin A, Es,
Bicos A+ Bysin A\, By cos A — By sin A, Bg). (7.1.111)
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Perhaps it would be convenient to write them in term of rotation matrices, so let
us define the three SO(3) rotation matrices Ra(\)

1 0 0 cosA 0 sinA cosA —sinA 0
Ri(A) =10 cosA —sinA| Ra(N) = 0 1 0 Rs(A) = | sinA  cosA 0],
0 sinA cosA —sinA 0 cosA 0 0 1
(7.1.112)

this allows us to write the flows 274 in a more compact way as

73 (N, s,x, E, B) = (5, RA(\)x, RA(\)E, R4(\)B) . (7.1.113)

Carrollian supertranslations of the electric limit of Maxwell’s equations have a

three-parameter generator

a ¢ bZC a
Tabe = 7°Y°2°— + eryx ( Y )EJ

.1.114
0s ox! 0By’ (7 )

with a,b, ¢ € N. The system of ODEs to solve in order to find the action of these

generators is

Y (A) = Taber(n)- (7.1.115)

The flow of each Ty, is a 1-parameter transformation given by

hleve . R x &, — &, (7.1.116)
(A, s,x, E, B) — h'a (X, s,x, E, B) := (s + Az%y’z¢, x, E, B + \V (:L"aybzc) X E) )
(7.1.117)
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Taking the successive application of these transformations for different values of

a, b and ¢ we get a power-series expansion of an arbitrary C* (R?) function

flay.2) = D Aapery’2". (7.1.118)

a,b,ceNp

Using this, it is possible to summarize these transformations as

W™ (R?) x & — &, (7.1.119)
(f,s,x,E,B) — WM (f,5,x, E,B) := (s + f(z,y,2),x, E,B+Vf x E).
(7.1.120)

Supertranslations in the electric limit, just as in its magnetic counterpart,
have Carrollian boosts as a subgroup which is recovered by considering only
linear C'* (R?®)-functions and the action of them yields the already-known

transformations under boosts'’.

Next in line are time dilations D € TE,. In contrast to the magnetic limit’s spatial

dilation, there’s a difference in sign for the magnetic field part

0

= 71121
A0B. ( )

0
"
P=wyi-B

The system of ODEs to solve in order to find how this transformation act is

4 (A) = Dy (7.1.122)

Solutions to this system of differential equations are used to construct the flow

10Same considerations as previously must be taken.
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P R x & — &, (7.1.123)
(A, 5,x, E,B) — hP (\,5,x,E, B) := (s,e’\x,E,e_AB) : (7.1.124)

Time dilations Q@ € TE&, also have a different sign in the magnetic field

transformation part if we compare it with its counterpart in the magnetic limit

0 0

The system of ODEs to solve to find the symmetry transformation for time

dilations is

(A = Q- (7.1.126)

Solutions to this system are used to construct the appropriate flow

he:RxE& — & (7.1.127)
(A, s,x, E,B) — h?(\,s5,x, E,B) := (¢s,x, E,e"B) . (7.1.128)

Both spatial and time dilations correspond to actions of the multiplicative group
(R*,-).

Special conformal transformations in the Carrollian electric limit are characterized

by vectors Sy € TE, given by
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0 0 9,
SA :233A (33' a_B+SaS) —.CL‘Bl’Ba? (71129)
0 0 9,

0 0 0 0
— 4_.TABJ8—BJ + 2£U (BAaBJ BJ@W) + 2s EAJKE E (71131)

The system of ODEs to solve in order to find how these transformations act is

Y (A) = Saqn- (7.1.132)

Solutions to these equations are used to construct the flows that correspond to

each special conformal transformation

A R x & — &, (7.1.133)
(A, s5,x, E,B) — h% (\,5,x, E, B). (7.1.134)

Explicitly we have

RS (N, 5,%, E, B) = (wy(\)s,wz(\) (z — Ax - X) , we (N)y, wa ()2,

Ti(N)E, T1(\)B — 0(\)E) (7.1.135)

hS2 (N, 5,%, E, B) = (w,(\)s,w,(A)z,w,(\) (y — Ax - x) ,w, (N2,
To(N)E, To(AN)B — O2(\) E) (7.1.136)

h% (N, 5,%, E, B) = (w,(\)s,w,( Nz, w. Ny, w.(A) (z — Ax - x),
Ts(\)E, T3(\)B — O3(\E), (7.1.137)

where T4 (M) and O4(A) were defined in the previous section. Notice there is a

sign change in how Q4 (\) enters the transformation.
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7.1.3 Space-time symmetries: the algebra

Both limits have their own set of vector fields generating their symmetries which
differ only in how they transform the electric and magnetic field. By taking the
pushforward of the projection map'' we get the spatial part of said vector fields.
Recall

(Tm), : TEp — TC* (1), : TE, — TC*H! (7.1.138)
X — (m), X X — (m), X. (7.1.139)

For simplicity we write 7, as a stand-in for the appropriate pushforward

0

Pr=mPr=57 (7.1.140)
H=nH= % (7.1.141)
Jr=mJr = eUK:vJaxiK (7.1.142)
Trmj = TxTrimj = x"ymzk% (7.1.143)
D=nD= xl% (7.1.144)
Q=mQ= s% (7.1.145)
Sa=mSs =214 (S‘:Ba% + s%) — :cB:cB@%. (7.1.146)

Let V be the real vector space spanned by the vector fields defined above

V = spang { Pa, H, Ja, Tape, D, Q, Sa} . (7.1.147)

With A € {1,2,3} and a,b,c € Ny. The vector space V, together with

the differential-geometric commutator |-, -] form an infinite-dimensional algebra

UEither (m,,), or (m.), depending on whether we are working with &,, or &, respectively.
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(V,[-,-]). This possesses finite sub-algebra which corresponds to the Carrollian
algebra. We take

0 0 0
K =T =2— Ky =Ty =y— Ky =Ty = 2—. 7.1.148
1 100 $08 2 010 yas 3 001 283 ( )

Their commutators are taken to be the differential-geometric Lie Bracket

[PA,PB] :0 [PA,H] :0 [PA,JB] :EABCJK (71149)
[Py, Kp) = 645H [H,J4] =0 [H, K4 =0 (7.1.150)
[JA, JB] = EABCJC [JA, KB] = GABCKC [KA, KB] =0 (7.1.151)

It can be seen that this subalgebra closes and corresponds to the Carrollian Lie
algebra. This was, of course, to be expected as previous works had already proven

it. The rest of the commutator table is the following

[qu67 Trty] =0 [Tnmju Q] = Tnmj [Tnmjy H] =0
(7.1.152)
[Tnmjy Pl] - _nTn—l mj [Tnmja PQ] - _an m—1j [Tnmj7 P3] - _anmj—l
(7.1.153)
[H,D] :0 [DaTnm]] = (n+m—|—j)Tnm] [PA,SB] :25AB (D—f-Q)
(7.1.154)
[HaSA]:2KA [D,S[]:S] [D’Q]:O
(7.1.155)
(D, Ja] =0 [Py, D] = Py S, S5] = 0
(7.1.156)
[Pa, @] =0 [H,Q] =H [Ja4,Q1 =0
(7.1.157)

[Ja,SB| = €apcSc (@, S4] =0, (7.1.158)
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and the ones that were far too long to be included above

7.1.159
7.1.160

J=@2—2j=2m—n)Thsimj +n(Tcimio; + Tocimjre)  ( )
J=@2=2—m=2n)Tymi1; +m(Tr2m—1; + Tam-1j42) ( )
[Tnmja S3]=(2—7—2m —2n) Tom j41 + 7 (Tnm+2j—1 + Tn+2m]‘_1) (7.1.161)
] (7.1.162)
] (7.1.163)
] (7.1.164)

Notice the downward ladder is truncated at zero for the index values of T),,;.
This means that the range of {n,m,j} is Nj. However, negative values can be

included and the algebra still closes'”.

This is all well and good but characterization is needed in order to be able to
properly talk about this group. We found that this has an overlap with the
Conformal Carrollian algebra of order 2. Conformal Carroll groups of order k are

vector fields X which satisfy the condition according to ( )

Lx (g® &%) =0, (7.1.165)

where g = d4pdr? ® dxP and %% = ®i=1 &. The vector fields obtained above
satisfy this criterion for k = 2. We first get (7.1.165) into a readier expression to

compute

LX (g (%9 5®2) :6AB (LXdQZ'A) ® d.Q?B X §®2 + 5ABdZL‘A X (LXdQZ‘B> & §®2
+9® (Lx§) ®E+9g®ER (LxE), (7.1.166)

which means we have to compute two different kind of terms, namely

1280 far, negative exponents have been absent in the discussion because our approach excludes
them in the polynomial expansions.
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Lxdz" = d (dz” (X)) Lxé=[X,{]. (7.1.167)

We start by calculating for the three generators of spatial translations, for which
the Lie derivatives yields zero by virtue of one being the exterior derivative of an

exact form and the other one by having null commutator

Lp,dz® =d (dxA (—)) Lp,& =[P, €] (7.1.168)

=0 — 0. (7.1.169)

For the generator of time translations we have the exact same picture as before.

It is worthy of mention that under our definitions H = £

Lydx® = d (dz* (H)) Ly€ =[H,¢] (7.1.170)
=0 = 0. (7.1.171)

For the generators of spatial rotations the Lie derivative of the metric g is zero as

shown in chapter 2. The commutator in this case also vanishes

Ly, dz® = d (dz” (Jr)) L& =[Jr, €] (7.1.172)
=d (GIJAZL‘J) =0 (71173)
= eryadr’. (7.1.174)

We have L, g is zero on accounts of being the symmetrization of an antisymmetric
object, as shown before. Super-translations are in the kernel of dz# and also have

zero commutator with &
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L, de* = d (da:A (x“ybzc%>> Lr,. = [Tape €] (7.1.175)

=0 = 0. (7.1.176)

Spatial dilations do not satisfy the criteria for being part of the Carrollian conformal

algebra of order two, as seen in the following

ox!
= da? = 0. (7.1.178)

Lpds? =d (dxA (xfi)) Lpé = [D, €] (7.1.177)

This yields Lp (g ® £€%?) = 2g ® £€¥2 and not zero. A quick conclusion from this
is the algebra spanned by these generators is not a subalgebra of the one we are

interested in. However, this can be compensated with the second-to-last generator

Loda® = d (d:cA <s%>) Lo€ = [Q, €] (7.1.179)

—0 - ¢ (7.1.180)

This yields Lg (g ® £%?) = —2g ® %% and also not zero'’. Therefore, it is not
a member of the conformal Carrollian algebra. On their own, neither D nor @)

constitute members of this algebra. However, their sum Y = D + @ is since
Ly (g®&%%) = Lqip (9 ®£%%) = (Lp + Lq) (9 ® £#%) = 0.

Although we have been calling them special conformal transformations, it was at
this point we found out exactly which kind of special conformal transformations

they are, namely of level £ = 2. We check it satisfies the criteria as follows

13Note had we chosen k = 0 this would have satisfied the criteria.
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Ls,dz’ =d (d:vI (2xA (xBa% 1 s%) - xBxBa%A)) Lg,& =[S, €
(7.1.181)

=22 dr 4 + 2z ada’ — 25114563de = —2x4&.

(7.1.182)

Using this we get Lg,g = 4x4g and Lg, (g ® £€¥%) = 0. This is only possible since
we chose kK = 2. Whether there are more vectors in the conformal Carrollian

algebra with & = 2 is beyond the scope of the present work.

In general, for (7.1.165) to be satisfied it is needed that

Q
Lxg = Qg Lx¢ = —Eﬁ (7.1.183)
0 0
Let X = X4— + X*— th
et DA + B then
Lx&=[X,¢] (7.1.184)
ox4 0  9X® 90
= — — —. 1.1
Jds OzA  0Os 0Os (7.1.185)
A
It follows 9 0. Lxda? = d (dzP (X)) = d (R?), then
s
Lxg = dpc [(Lxdz®) @ dz® + da® @ (Lxdz®)] (7.1.186)
X" 4 c, 0X% 5 A
= 0pc [6%“ dz” ® dx® + DA de” ® dx (7.1.187)
XA OXB\ .,
= . 1.1
((%B 5 ) dz” ® dx (7.1.188)

Putting this together we get
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= 0. (7.1.189)

By taking the time derivative of this expression we conclude X* is at most linear

in time s.

7.1.4 Space-time symmetries: the finite transformations

The restriction to the space-time symmetry transformations of each limit is done by
taking the projection map m,, or 7, for the magnetic and electric case, respectively.
For any X € V and XA € R the map A3 is a spatio-temporal symmetry of these

limits. A notorious simplification appears for CSCT after doing this, namely

KBS R3 x O3y o3+ (7.1.190)
(A7 8758) — hS (A,S,CL’), (71191)
where
< B T xS - x(rxr—Ax- x)
: (“"”)"((:fc—xw.w)«w—m-w)’(w—Aw-w)-(w—Aw-@)'

(7.1.192)

7.2 At the level of the Hamiltonian

The Hamiltonian approach is natural in both Galilean and Carroll geometries
since they both carry a choice of time given by the clock form 6 and the vector
field &, respectively. These choices give us a canonical Hamiltonian foliation to

work with.

Gauge theories have two pairs of equations of motion, one coming from a

Lagrangian density £ and one from a Bianchi identity
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duF = 0. (7.2.1)

Because of this, Hamiltonian descriptions of gauge theories rely on Lagrange
multipliers in order to account for the fact that not the entirety of variations
of canonical variables in phase space is independent. An explicit choice of such

Lagrange multipliers corresponds to a gauge fixing, as shown by Dirac in
(2001).

The Hamiltonian description of Maxwell theory was used in

( ) to obtain both Carrollian limits of electrodynamics. They also
showed it works for gauge theories of the Yang-Mills type. Hamiltonian descriptions
of electrodynamics are also discussed in classical textbooks such as ( )
and ( ).

Direct canonical analysis yields the energy function

1 1
E=— | n%, + =FuF? ), (7.2.2)
2 2
oL e
where 7* := ————. The Lagrange multiplier A,;0,7* to ensure charge
0(0:AL)

conservation is added to construct the Hamiltonian

1 1
H = / (—c%r%ra + —Fy F* — At&nr“) d’x. (7.2.3)
v\ 2 4

Notice that this does not require a full space-time metric but only a spatial metric,
used for both F,,F® and the integration measure. Said spatial measure can
always be obtained from the restriction of the Lorentzian one to space by choosing

time in accordance to &.
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7.2.1 Magnetic limit

The magnetic limit is directly obtained by taking the limit ¢ — 0 in (7.2.3). This
yields

HM = / GFG,,F@ — A,ﬁﬂ“) d*x. (7.2.4)
14

Hamilton’s equation of motion combined with Bianchi’s identity yield the correct

magnetic limit for Maxwell’s electrodynamics described previously.

7.2.2 Electric limit

The electric limit is obtained from (7.2.3) after field reparametrization

1
A, — cA, A; — cAy ¢ — -7, (7.2.5)
c

and then taking the limit ¢ — 0. Obtaining the electric Hamiltonian

1
HE = / (57'('&71'& — At&ﬂra) d3X. (726>
\4

Hamilton’s equation of motion combined with Bianchi’s identity yield the correct

electric limit for Maxwell’s electrodynamics described previously.
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Chapter 8

ModMax theory

8.1 Lagrangian formulation

Modified Maxwell theory, or ModMax for short, is the unique non-linear theory
of electromagnetism that has the same symmetries as Maxwell. That is, it is a
Lorentz-invariant, conformal and duality invariant in vacuum, U(1)-gauge field

theory. It is defined by two pairs of equations, the first being the Bianchi identity

dF =0, (8.1.1)

which in its vector calculus form corresponds to the pair

0B

The second pair of equations of ModMax theory comes from its Lagrangian, which
is formulated in terms of two Lorentz invariant quantities’ built using both the

U(1) curvature F and its Hodge dual F' = xF and are as follows

!The use of the word scalar was avoided here since only S is one. P is a pseudo-scalar.
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1 1_
S - —ZFMVF/“, p = _ZFMVF,U,V (813)
1 [ E? 1
=_ = _pB2 =-B-FE. 8.1.4
2 (62 > c ( )

With this, the Lagrangian of Maxwell free theory can be written quite simply as

L=25. (8.1.5)

In turn, ModMax theory is a 1-parameter family of Lagrangians given by

L, : = coshvy S+ sinhyv 5% + P? (8.1.6)
1 B2 , 1 [ E? S )
:§cosh7 <§—B ) —i—smhv\/z <§—BQ) +g(E-B) , (8.1.7)

where v € R{ is a positive number to ensure that the energy has a lower bound
in the quantum case, and the functions cosh and sinh were chosen to ensure dual
invariance, as will be seen later. From this definition we can note that Maxwell

theory is recovered when v = 0 is chosen.

So far in this work I have refused to derive the EOM in term of coordinates. At
this point, however, proceeding in that fashion can prove be a little more effort

than it’s worth.

The equations of motion coming from the ModMax Lagrangian are

(2022)
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— i 8£’Y

0 =0, W]
_p [0£y 05 L 9L, op
" 0S OF,, 0P OF,,

(8.1.8)

L .. SPEw.yppw
=0, _coshfy F* 4 sinh~y NS ]
L. Oy (SFM 4+ P Fr) /5?4 P?
=cosh~y 0, F" 4 sinh ~y 54 po
(S Fm 4 P Fm) (S2 4 P2) 7% (59,8 + P3,P)
52 + P2
(S + P2) (S8, F™ + F™9,S + PO, F* + Frd,P)
(52 + P2)3/2
520,8 Fr + P29, P F* + SPY,P F* — SPJ,S F
(52 + p2)*?
(S3 + SP%) 9,F™ + (P3+ PS*) 9,
(52 + P2)*?
S2F9,P + P?F#d,8 — SP (9,P F™ + 8,5 Fr)
(52 + P2)*?
SO, FH + PO, Fr
V52 + p?
(S2Fmw — SPF™) §,P + (P*F* — SPF") 0,5
- (52 + p2)3/2 ’

— sinh ~

=cosh~y 9, F" 4 sinh~y

— sinh ~

=cosh v0, """ + sinh ~y

+ sinh y

=cosh v0, """ + sinh ~y

(8.1.9)

Where we have included some detailed calculations for future reference. While
having the EOM written as in (8.1.9) will be the crucial to taking the Carrollian
limits, it is useful to have them written in a slightly different way. To achieve this
we refer to (8.1.8) and note that it has the shape of an exterior derivative of some
form G. Our objective will be to find said G. First we rearrange the equation for
it

S P _
(9M |:(COSh’}/ -+ sinh 7@) FH + Sinh’y\/ﬁﬁ—”w =0. (8110)
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Remark:

oS 1 oP 1
N — 111
0F,, 2 0F, 2 (8.1.11)

Equation (8.1.10) can be rewritten in terms of differential forms by using properties

of the Levi-Civita symbol as

dxG =0, (8.1.12)

where G is a 2-form given by

S P
G = | coshy +sinhy———— | F + sinhy———— + F 8.1.13
(o sy ) s S
With this, ModMax equations of motion correspond to the pair
dF =0 dxG =0, (8.1.14)

which is quite reminiscing of Maxwell’s equations written in differential forms.
Writing them in this fashion is useful for quite different purposes, one of them

being finding their conserved charges.

This also suggest the presence of duality invariance, which is the case. ModMax
being duality invariant means it satisfies the Gaillard-Zumino criterion, first

presented in ( ). In other words we have

(xG),, G* = (xF),, F™, (8.1.15)

so duality transformations
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G’ cosf siné G
= (8.1.16)
(%F) ., —sinf cosf) \ (xF),,

_ G cost + (xF) , sind
(xF"),, cos0 — Gy sinb

(8.1.17)

leave ModMax invariant. Conformal invariance can be checked by noting the

stress energy tensor of the theory is traceless.

8.2 Hamiltonian formulation

In terms of Hamiltonian formulation, we do not have Hamiltonian formulation.”
In spite of not having been able to construct a proper Hamiltonian, we can build
the energy density function in terms of the electric and magnetic fields. We start

with the canonical momenta

[f—; —32] E+2[E-B|B .

1 1
1" = ——coshy E — — sinh~
¢ 2c2 1 (B 2 )
- | —= - B? —(E-B
4(02 ) +c2< )

0

And, as should be the case, the canonical momentum 7° associated to the scalar
potential is 7% = 0. With this, we can construct the energy density of the theory®

in the usual way

H= / [A - 4 &x (8.2.2)
Q

2Even though ModMax was constructed from its energy density function, we do not have its
Hamiltonian formulation, for it requires us to be able to solve the time derivatives of the
connection in terms of their canonical momenta. This task has proven difficult given the
non-linear aspects of the theory.

3] need to emphasize this is not the Hamiltonian as it would need to be a function of phase
space. If the expression we arrive at were to be written in term of canonical variables then it
would be the Hamiltonian. Not before.
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Here it is possible to exploit the fact that E = —A— Vo to write

H:/[—E-W—ngb-ﬂ'—ﬁ]d?’x (8.2.3)
Q
E? 5
. | [§—821E2+2[E-B]
:/ — coshy E? 4+ — sinhy
c? 2¢* 1 [ E? 2 )
Z<§—B2) +C—2(E-B)
~ V¢ -m—L]| dx (8.2.4)

~ Vo m| d’x (8.2.5)

Integrating by parts the last addend in the previous expression we arrive at the

energy function

2 2
(&-2) ()
+ ¢V - 7| d*x. (8.2.6)
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Although not a complete Hamiltonian formulation®, this expression will still be
useful in a following section to construct a Hamiltonian formulation of both the

electric and magnetic Carrollian limit of ModMax theory.

4And I cannot stress this enough, since we do not have an explicit solution for the canonical
momenta 7t this is not written in canonical variables and, therefore, is not the Hamiltonian.
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Chapter 9

Carrollian limits

9.1 At the level of the equations of motion

From vacuum ModMax electrodynamics it is possible to construct two
nonequivalent limits which are Carroll-covariant, namely the so-called electric and

magnetic limit.

9.1.1 Electric limit

For the electric limit we re-scale E, = E, s = (¢cC)t and B, = (¢cC)B in

Maxwell’s equations, then take the limit C' — oo.

0B,
VXEe—FW:O V'Bezo (911)
_ OE, _
(coshy + sinh ) 9 0 (coshy 4 sinhv)V - E, = 0. (9.1.2)
s

This electric limit is equivalent to its Maxwell counterpart and proves to be Carroll

invariant, with transformations under boosts given by:

E.(x,s) = El.(x,s) = Ec(x,s — b-x) (9.1.3)

B.(z,s) = Bl(x,s) = Be(x,s —b-x) —b x Es(x,s —b-x). (9.1.4)

e
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When the limit v — 0 is taken, the linear theory is recovered'. Therefore the
symmetries of the electric Carrollian limit of ModMax are the same as the ones

found for the electric Carrollian limit of Maxwell theory.

9.1.2 Magnetic limit

The magnetic limit is obtained from re-scaling E,,, = E, B,, = (C/c) B and
s = (eC)t in Maxwell’s equations and then taking the limit C' — oc.

0B,

= g
s 0 (9.1.5)
VB, =0 (9.1.6)
OE,,
- OB : B ds

e V x By, — 9 ) QSmhfyB—%Bm =0 (9.1.7)

B, - E,,
e "V - E, +2sinhy (Bm-V)B—2 = 0. (9.1.8)

In contrast with the electric limit, this one has surviving non-linear terms in both
equations coming from the Lagrangian. Equation (9.1.7) can be manipulated in
such a way as to eliminate its non-linear contribution, while the non-linear term

remains in (9.1.8). Indeed, if we take the dot product with the magnetic field By,

OEn, OEn,

(v xB,, - Z™).B,, — 2sinhyB,, - -0 9.1.9
e ( X P > sinh s ( )
OE
—B,, - =M . 9.1.10
€ e ( )
Notice that if we combine this with (9.1.5) we arrive at

0 OP,
Y(E, B, =%"_9 9.1.11
5 )= 5 ( )

!Although in this particular case taking the limit seems irrelevant, when coupling the theory to
matter the ModMax case will contain a y-dependent vacuum permittivity and permeability in
contrast to its electric Carrollian Maxwell counterpart.



9.1. At the level of the equations of motion 121

where P, is the magnetic Carrollian version of the Lorentz invariant P. This
means P, is constant in time. We have found a non-trivial magnetic Carrollian
limit of ModMax theory and delve now into the subject of obtaining and analyzing
its symmetries. This is eased by noticing it is possible to use the results presented
in section 7.1.1.1. Both equation (9.1.7) and (9.1.8) can be rearranged in such a
way as to map them into the shape of the magnetic Carrollian limit of Maxwell

theory”. This is achieved as follows

e 'V x Bm — % (G_FYEm + 2Slnh")/B—ngm) =0 (9112)
V. (e’VEm + QSinh”yB—QBm) =0. (9.1.13)

Notice all non-linear contributions are acting as a modification to the electric field
FE,,, and only appear in the pair of equations coming from the Lagrangian, as
there is no dependence on the electric field in the remaining pair. Therefore we
define

€ = By, +2¢7 sinhy ="~ By, B = By, (9.1.14)

which is invertible, with inverse given by

¢-B

E,, = ¢ —2e "sinhy B2

B B,, = B. (9.1.15)

By performing this transformation, ModMax’s Carrollian magnetic limit can be

written in the same way as Maxwell’s

2Remark: while it is true that there exists a bijection between the magnetic Carrollian limit of
ModMax theory and that of Maxwell theory, they are not equivalent. This is because there are
~-dependent solutions to the magnetic Carrollian limit of ModMax
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OB

== B = 1.1

5, =0 V-B=0 (9.1.16)
VX‘B—g—fZO V-¢=0. (9.1.17)

The symmetries of these equations were obtained in a previous chapter and can
be used to deduce how the fields E and B transform by using the transformations
for € and B. We shall start from the transformations that are most difficult to

construct, this is
PR3 x &, — Em (9.1.18)
(A, 5,%x, & B) — h” (X, 5,%, € DB) := (s,x + A, &, B). (9.1.19)

We have B’ =8B’ = B = B and the same can be done for the electric field since

neither of them transforms. And the second most difficult one, time translations
R R x &, — En (9.1.20)
(A, 5,%, & B) — AT (N 5,x, & B) = (s + \,x,EB). (9.1.21)

Just by the same logic as in the previous case, we have E' = E and B’ = B.

For rotations it is convenient to consider the general transformation

h7 : SO3) x En — Em (9.1.22)
(R,s,x,€& %B) — h/ (R,s,x, €& B) = (s, Rx, R&, RB) . (9.1.23)

This transformation is used to derive how the electric and magnetic field transform

under rotations in the Carrollian magnetic limit of ModMax”

3Not surprisingly, in the same way as in Maxwell or all the other cases.



9.1. At the level of the equations of motion 123
E =@ —27 sinhfyéll '_ g, B’ B =% (9.1.24)
= RE — 2¢ 7 sinh 7@ = RB (9.1.25)
(RB)” RB
=R (@ — 2¢ 7sinh~y if%) — RB (9.1.26)
_ RE. (9.1.27)

Super translations are an action of the (C* (R?), +) additive group with action

given by

bM  O® (R?) x & — &

(9.1.28)

(f,5,%x,¢&B) — WM (f,5,%x,&B) = (s+ flz,y,2),x,& = V[ xB,B).

(9.1.29)

We have already proven that the magnetic field not transforming implies the

magnetic field not transforming. Curiously enough, the electric field transforms in

the same way as in the Carrollian magnetic limit of Maxwell theory

¢ . P

sB/Q %/

E’' = ¢ —2¢ 7sinhy

(€ —VfxB) B

=CE—-VfxB -2 "sinhy B2 B
=€~ 2V sinhy =B — Vf x B
=F-VfxB.

(9.1.30)
(9.1.31)

(9.1.32)

(9.1.33)

Space dilations correspond to the action of the multiplicative group (R*,-), where

R = R/{0}
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WP RxE, — &,

(A, 5,%, € B) — P (), 5,x, & B) = (s, e'x, €, e)‘%) )

They have the same transformation rule

¢ . P

E’' = ¢ — 2¢ Vsinhy 57 B' =%
2>\€ .8
= ¢ — 2¢ 7sinh ’}/eew\w = GA%
=F — ¢*B.

(9.1.34)
(9.1.35)

(9.1.36)

(9.1.37)

(9.1.38)

Time dilations correspond to the action of the multiplicative group (R*,-), with

action given by

he R xE, — &,

(A, 5,%, & B) — h2(\ 5, x, E B) = (eAs,x, ¢, 6_)‘%) )

(9.1.39)
(9.1.40)

Time translations were expected to behave in the same but opposite way as the

spatial ones, which is indeed the case

¢ B

E’' = ¢ — 2¢ Vsinhy =2 B’ =%
_2>‘Qf )2
= QE — 2677 sinh VG(E_QW = 67)\28

(9.1.41)

(9.1.42)

(9.1.43)

Field dilations are also an action of the multiplicative group (R*,-) given by
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PV R x & — En (9.1.44)
(A 5,%, & 9B) — V() s,x,EB) = (s,x, e, e)‘%) , (9.1.45)

and, of course, it implies the same transformation rule in the Carrollian magnetic
limit of ModMax

@/.%I

E’' = ¢ —2¢ 7sinhy T B’ (9.1.46)
= ¢*¢ — 2sinh 'yi/\zf—“é?e)‘% (9.1.47)
= ¢ (e — 2¢ 7sinh~y 2? %) (9.1.48)
= E. (9.1.49)

This one is an action of the additive group (R, +)

MR X &y — Em (9.1.50)
(A, 5,%, & B) — A" (), 5,%, &, B) := (5,%x,E — \B,B). (9.1.51)

It may appear at first that the transformation rule for this case is different from
its Maxwell counterpart. However, since e=27 is a strictly positive number for any

A €RisarTeR given by Ae™? that produces the same transformation

@/.%/

E’' = ¢ —2¢7sinhy 57 B’ (9.1.52)
= € — AB — 2¢ Vsinhy zé? B + 2\e 7 sinh 1B (9.1.53)
=FE—\(1—2¢"sinh~y) B (9.1.54)
=E — e PB. (9.1.55)

Special conformal transformations of order two are characterized by
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o4 R x &, — & (9.1.56)
(A, 5,%, & B) — h% (5,x, € B), (9.1.57)

with them being explicitly given by

Bt (X, 5,%, €, B) = (wa(A)s, wa(A) (2 = Ax - %), we(N)y, wa(N)z,

Ti(N)€ + 0,(\)B, T, (\)B) (9.1.58)

o2 (N, 5,%, €, B) = (wy(A)s, w, (N2, wy(A) (y = Ax - x),wy (A2,
To(A)€ + O2(N)B, TH(N)B) (9.1.59)

hS5 (A, 5,%, €, B) = (w.(\)s, w.(N)z, w.( Ny, w.(\) (z — Ax - X) ,
T3(\) € + O5(\)B, T3(\)B) . (9.1.60)

By using the properties’ (O4(A)a) - (T4(A\)b) = 0 and (Ta(N)a) - (Ta(N\)b) =
Qa(N)a - b for any a,b € R® we can prove the action of them is the same as in

the Maxwell case

¢ . B

E' = ¢ —2¢ 7 sinh~y B2

B’ (9.1.61)
(TA(N) €+ O4(N\)B) - (Ta(N)B)

:TA()\>Q3+OA()\)€B — 2e 7 sinh vy (TA(/\)%) . (TA()\)’B) TA()\)%
(9.1.62)

— () (e — 9¢~7sinh 7";—?%> +0L(N)B (9.1.63)

— TW(ME + O4(\)B. (9.1.64)

When the limit v — 0 is taken, the linear theory is recovered. Before concluding
this section, let us mention that (9.1.14) and (9.1.15) have to be considered as

duality transformations between two different theories, namely magnetic Carrollian

4Although it is not relevant to the current proof, each special conformal Carrollian transformation
of level two is an additive (R, +) group action. This means for each A € {1,2,3} we have
@A()\l)@AO\Q) = @A()\l =+ )\2) and TA()\l)TA()\Q) = TA()\l + )\2).
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ModMax and magnetic Carrollian Maxwell. These transformations prove useful
constructing Lie point symmetries of the former but by no means trivialize the
Carrollian ModMax theory. Coupling it to matter leads to completely different

theories.

9.2 At the level of the Hamiltonian

The Hamiltonian formulation of ModMax was done in the first order formalism in
( ) in accordance to ( ) using the Dirac method
described in ( ). This approach is no use for us, however, as it does not

yield solvable momenta and thus cannot be used to take Carrollian limits from it.

Even though we do not have an explicit expression of the ModMax Hamiltonian
written in terms of its canonical variables it is still possible for us to arrive at
Hamiltonian formulations of both magnetic and electric limits of ModMax by

working with our incomplete Hamiltonian formulation of ModMax.

This is done in two equivalent but slightly different ways in what follows. First
the Hamiltonian formulations of the limits are built by taking the Carrollian limit
of the ModMax momenta and using them to construct the action principles by
previous appropriate re-scaling of the electric and magnetic field. Afterwards,
the ultrarelativistic limit is taken in the resulting action principle as is done in

( ). This two-step limit is unavoidable in
the current situation as the use of the Carrollian limits of the canonical momenta
is nevertheless needed to arrive at the adequate limits of the equations of motion.
The second approach is to consider the ModMax energy function, reparametrized
according to the desired limit and then taking the limit, this yields the same result
as the previously discussed method and one arrives at the correct equations of

motion if the Carrollian limits of the canonical momenta are taken into account.

The first step in the first method is to write the Lagrangian explicitly in terms of

the connection in order to be able to find the canonical momenta
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L =cosh~y S+ sinhy v 5%+ P? (9.2.1)
1 B2, _ 1 [ E2 S| )
=3 cosh (6—2 —B ) —l—smh’y\/z (? —B2> —|—g(E-B) (9.2.2)

+ sinh~y \/%1 (é (v¢+A)2 (V% A)2>2 + 012 ((vo+A) vx A>2.
(9.2.3)

As expected, there’s no dependence on 925, which also happened when Maxwell
theory was considered and a rigorous study of this Hamiltonian formulation would
require an analysis under Dirac’s formalism of restrictions, however, that is not

needed for the current work.

Therefore 70 := Z—£ = (. The only non-zero canonical momenta are
T = 8,./3 (9.2.4)
0A,
1 -\ @
== cosh (qu + A) (9.2.5)
1 1 A\ 2 9 L\ @
- EL—2<V¢—I—A> —(VxA)}(ngjLA)
+ —sinh 7
2 11 2 7 1 . 2
7 {g <V¢+A> _(V x A) } +5 [(v¢+A) v xA]
) (Vo+A) -V xA|(vxA)
+ — sinh~y e
c

}1[0—12 <V¢+A>2—(V><A)2r+c—12 [<V¢+A> ~V><Ar>

[E—Q—B2]E+2[E-B]B

c2

1 [ E? 1 ,

1 1
=— gcoshvE— 2—Czsinh7
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It may be a hell to solve for A. Fortunately, solving for A is equivalent to solving

for E. Suppose there’s an inverse function f such that

E=f(r,B). (9.2.8)

Then A = —f (7, B) + V. Recall that in the Maxwell case Gauss constraint

comes from the appearance of V¢ in the canonical momentum as

1 .
mar = (w + A) , (9.2.9)
and solving for A we get
A =Pmy — Vo (9.2.10)

Som-A= *n2, — m- V¢ and integrating by parts the second term we get ¢V - myy,

which is the Gauss constraint considering ¢ as a Lagrange multiplier.

In conclusion, we can get the Gauss constraint for ModMax in the same fashion

as in Maxwell.

9.2.1 Construction of solvable momenta

Solving for E in equation (9.2.7) is no easy task. An approach for doing so is
taking the dot product with the magnetic field B, this yields a quartic equation
for B - E. Replacing the result in (9.2.7) we managed to reduce the dependence
on FE but not to fully solve the equation.

A more manageable approach to constructing Hamiltonians for the electric and
magnetic limits of ModMax is to eliminate the terms of the definition of the
momenta which will not contribute to the limit. This is done by means of the
introduction of a dimensionless parameter A in the same fashion we used the

Carrollian velocity C' for taking the limits.
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9.2.1.1 Electric case

The introduction of the parameter A for the electric case is done by field

reparametrization as follows

E=F B=_B. (9.2.11)

Using this, the canonical momentum becomes

E/2 Bl2 2
<?_F) Bt p®- BB

1 B2\* 1 ,
_ 2 __ 7. ’
\/4 (E 02A2> * c2\? (E"- BY)

(9.2.12)

1 1
= coshy E' — @sinhy

We take the limit A — oo to get the electrical momentum

e = lim 7p (9.2.13)
A—oo
| 1
= -3¢ E = — 3¢ E. (9.2.14)
Solving for A we get
A=cfen, — Vo (9.2.15)

Now we give the same treatment to the Lagrangian density
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1 B2 L\ . 1 (B2 N\ 1 2
£:§coshfy c_2_B + sinh v 1 0_2_3 —I—;(E-B) (9.2.16)
1 E?* B? , 1 /E2 B2\* 1
= §coshfy <c_2 - F) + sinhy \/z_l (c_2 — ﬁ) + =T (E-B). (9.2.17)
And we take the limit A — oo
lim L = le”*E2 (9.2.18)
A—soo 2 ’ -
With this we construct the Hamiltonian
HE = / [we A c] dx (9.2.19)
0
1
= / {56_77% — T v¢} d*x. (9.2.20)
0

The Hamiltonian obtained via this procedure coincides with the one constructed

in ( ) for the electric limit of Maxwell theory.

Therefore, the electric limit of ModMax is equivalent to Maxwell’s.

9.2.1.2 Magnetic case

For the magnetic limit we re-scale the fields following

1
E:KE, B:Bl7

leading to the expression

(9.2.21)
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El2
< 2A2 _BIQ) E,+2(E,B,)B,
C

1/ E? S| '
\/Z (CQAQ _ B/2) + eI (El . B/)Q

(9.2.22)

1 1.
To =~ 5% coshy E' — 26—2Asmh7

We wish to preserve only the highest order terms in this expression, which

corresponds to O(A™1). To achieve this, we need to take the following limit

Tm = lim A7mg (9.2.23)
A—oo
1 2 E-B
= ——e¢ "E — — sinhy B. (9.2.24)
c c

The tilde was dropped because it became irrelevant at this point. Here we can
solve for E - B by taking the dot product of equation (9.2.24) with the magnetic
field B, which yields

E-B=-c* "1, B. (9.2.25)

Allowing us to solve for E, and therefore for A

_E = 2 [wm — 25inh Ayl = B} (9.2.26)

T - B

BZ

A= [wm — 2sinhy B] —Vo. (9.2.27)

The Hamiltonian we get thanks to this is



9.2. At the level of the Hamiltonian 133

HY = / i A — .c] d*x (9.2.28)
0
_ i
= / c?e’m? — 2ce” sinh 7% — T, - ng] d*x — L (9.2.29)
Q
- i
= / c?e’r? — 2ce? sinh 7<‘T> +oV- Wm] d*x — (9.2.30)
0

where L is the ModMax Lagrangian written in terms of the canonical variables.

At this point not only is it convenient but it also is necessary to give the Lagrangian

density function the same treatment we’ve already given the momenta

1 E? 1 [ E? 1
L= 5 cosh <c_ - BQ) + sinh y \/Z_l <—2 — B2> = (E-B)*> (9.2.31)

1 E?
= §cosh’y <A202 — B? +smhfy\/

2 1
2
) +A262(E-B).

(9.2.32)

Notice we cannot proceed by simply taking the limit ¢ — 0 in (9.2.30). Taking

the limit A — oo in (9.2.32) here we arrive at

1

L= —56*732. (9.2.33)
Putting it all back together, we get
M 2 v v (’Nm ) B)2 1 —y R2 3
HY = g e’ — 2c% Slnh’7T+¢V'ﬂm+§6 B*| d°x. (9.2.34)

Finally, we take the limit ¢ — 0 in accordance to

(2021)
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1
HM = / {¢ Vo T + 56*732 d*x. (9.2.35)
Q

Two things I would like to remark here, first is this Hamiltonian has the same
form as the Maxwell one, second is that the non-linear character comes from the

momenta’s definition.

The equation of motion for the scalar potential is

. OHM 0 OHM
— =) = 2.
¢ on®  Oxt (8 (3i770)> 0 (9:2.36)
and the equation for it’s conjugate momentum is
OHM 0 OHM
7 = _oH : i (9.2.37)
0¢ dz' \ 0 (0;9)
0=-V-m, (9.2.38)
1 _ 2 B-FE
1 _ 2 . (B-VYB-E B-E
= e V-FE+ = sinh y [ 72 - (B-V)B*|. (9.2.40)

There’s a pair of equations more to be obtained from this. First we have the

equation for the vector potential A

. OHM 9 [ OHM
Ao=— — o (a(aﬂra)) (9.2.41)
= —8,0. (9.2.42)

This is the same kind of inconsistency that appears in the Maxwell case and we

must deal with it in the same fashion. But first, the final equation
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. OHM 9 [ oM
o= _8—/1a + % <m) (9.2.43)
10 E- B 0 0
I, - — -y Imk
29 [e E+2 7 B] e (e Bka(aiAa)E 8;Am) (9.2.44)
= % (e77Bie'™") (9.2.45)
_012% [e—WE + QSmMEéf B] _ (Y x B (9.2.46)

Now, to have a precise match with the equations obtained directly from the EOM
in (9.1.5), (9.1.6), (9.1.7) and (9.1.8), we need to reparametrize the electric and

magnetic fields as we’ve done in all of this work
1
E=—F,, B =-B,,. (9.2.47)
c

Recall we also need to consider Carrollian time s = (¢C) and the magnetic

Carrollian limit of Bianchi identity

0B,,
O0s

=0 V- B, =0. (9.2.48)

Putting this all back together we obtain that equation (9.2.46) becomes

OE,,
_ OE,, ) ™7y

Notice the decision made is consistent with the basic idea that Hamiltonian

equations are equivalent to Lagrangian ones for their respective case.
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9.2.2 At the level of the Hamiltonian 2: Electric Boogaloo

While the construction shown in the previous subsection consistently leads to the
correct equations of motion, the order of limits may raise doubt of its legitimacy.
In what follows I explore an alternative method for the derivation of those

Hamiltonians.

The main idea is to use equation (8.2.6) to construct the limits directly.

9.2.2.1 Electric case

Recall we constructed the energy density function as

If this were written in terms of the canonical variables, it would only be needed
taking the limit ¢ — 0 in this expression to achieve one of the limits. A possible
approach is to switch first to Carrollian units. We consider field reparametrization

as follows

1
E =cE, B=—B, T = —T, b = Coe. (9.2.51)
cC c

With this we obtain
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1 . B
H :/Q §cosh7 (Ee - 0202)

2 2
(E2 - e ) (E2 + e )
€ 2072 € 2072
cc cC + 6.V - me | dPx, (9.2.52)

4 2\ 2
1 B? 1
\/ 1 (E - —c) tace (Fe Be)

and taking the limit C' — oo here we arrive at

1
HY = / [567E3+¢6v-7re d*x. (9.2.53)
Q

Now, to conclude this calculation we must use the definition of the electrical

momenta in (9.2.14) and reparametrize it accordingly, this is

e = —¢ E,. (9.2.54)

This allows us to write the Hamiltonian in terms of the canonical variables as

follows

1
HY = / [56_77@ + ¢V - e | d®x. (9.2.55)
o)

Notice we arrived at the same result as we previously had. This time, though, we
have the advantage of being able to call this the electric limit of the ModMax

Hamiltonian instead of a Hamiltonian constructed from the limit of the momenta.
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9.2.2.2 Magnetic case

For mere convenience, in this case I'll use the "A approach" employed in the

previous section. The electric and magnetic field are reparametrized as follows

1

E=FE B=FH, (9.2.56)

replacing in (8.2.6) we arrive at

1 E? 9
H:/ §coshfy <02A2+B>

E? E?
) ()
+- sinh v + ¢V 7| d®x.  (9.2.57)

4 2 2
1/ F 1 2
_ _ R2 N .
\/4 <02A2 B> +02A2(E B)

Taking the limit A — co we arrive at

HM = / BNBZ TRPAVER (9.2.58)
Q

Where 7, is the same as defined in equation (9.2.24). We have therefore arrived

as the same formulae as in the previous section.
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Chapter 10
Conclusion

En el presente trabajo se encontraron los limites Carrollianos de ModMax (Modified
Maxwell), tanto la contraccién eléctrica como la magnética. De las cuales solo la
contraccion magnética posee contribuciones no-lineales no-triviales, puesto que
la contraccién eléctrica difiere de Maxwell solo por un factor global. Ademds, se
encontré un mapa invertible entre el limite Carrolliano magnético de ModMax y
aquel de Maxwell' que surge de intercambiar los momentos canénicos asociados
al potencial vectorial entre ambas teorias. Pese a esto, se espera que al incluir
materia en la formulacion se generen diferencias significativas con respecto a sus

contrapartes en la teoria de Maxwell al incluir materia en la formulacién.

La inclusién de materia constituye una continuaciéon natural a este trabajo y
requiere considerar qué sucede con la ecuacién de continuidad para la carga
eléctrica. Junto a esto, es posible que diferentes formas de acoplar los campos a
materia lleve a resultados con dindmicas no triviales, como se ha visto en trabajos

en geometrias Carrollianas que incluyen interacciones entre particulas.

El anélisis de las simetrias de los limites Carrollianos de Maxwell mediante el
método de simetrias de contacto de Lie permitié tanto verificar lo que ya se
sabfa: que ambos limites son covariantes bajo la accién del grupo conforme
Carrolliano de nivel 2, como la obtencién de resultados nuevos que complementan
esto: la construccion explicita tanto de la accién de las transformaciones conformes
especiales Carrollianas de nivel 2 sobre los campos, como de la accién del

sector infinito dimensional correspondiente a supertraslaciones en el tiempo

Wéase (9.1.14).
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Carrolliano sobre los campos; la separacién de las dilataciones espacio-temporales
en dilataciones espaciales y temporales; el hallazgo de simetrias internas que fueron
legadas por los generadores de transformaciones de dualidad. Los generadores
encontrados mediante este método fueron exponenciados para construir sus
respectivas transformaciones finitas, donde cada una corresponde a un grupo
uniparamétrico con pardametro real. Dichas transformaciones, en conjunto con el
isomorfismo entre el limite Carrolliano magnético de Maxwell y el limite Carrolliano
magnético de ModMax, fueron usadas para mostrar que las simetrias encontradas

para este limite de Maxwell corresponden también a aquel de ModMax.

Debido a que el método empleado para encontrar simetrias emplea polinomios
cuyo orden hace crecer rdpidamente los costos computacionales asociados a los
cédlculos y a que en todo orden trabajado en el presente escrito se encontraron
generadores nuevos correspondientes a las supertraslaciones”, existe la posibilidad
de que existan generadores nuevos a orden superior de los polinomios. Determinar

la existencia de estos es también una continuacién natural de este trabajo®.

Formulaciones Hamiltonianas fueron encontradas para ambos limites mediante
dos acercamientos sutilmente distintos. El primer método se basa en construir el
Hamiltoniano a partir de los limites Carrollianos de los momentos canénicos
asociados al potencial vectorial, el segundo método se basa en obtener los
respectivos limites Carrollianos de la funcién de energia para cada caso. Estos
acercamientos indirectos fueron consecuencia de la dificultad para resolver las
ecuaciones constitutivas (9.2.6) y, notoriamente, reproducen las ecuaciones de
movimiento correctas. En esta linea, la construccién de una formulacién simpléctica

tanto para el limite eléctrico como para el magnético puede ser interesante.

Finalmente, cabe destacar que hemos construido los limites Galileanos de ModMax
y obtenido y analizado sus simetrias. Su no inclusion en este trabajo obedece a tres
cosas: este escrito es ya suficientemente largo, no encontramos transformaciones
conformes especiales y queremos saber por qué y no encontramos contribuciones
no-lineales no-triviales en estos limites. Sin embargo, cabe destacar que estas
teorias poseen también una separacion del generador de dilataciones espacio-
temporales en dos y, en ambos casos, estas simetrias poseen acciones no triviales

sobre los campos.

2Y por consiguiente el proceso nunca truncé.
3Encontrar las soluciones a la ecuacién (7.1.188) puede servir para esto.
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Chapter 11
Conclusion

In the present work, the Carrollian limits of ModMax (Modified Maxwell) were
found, both in its electric and magnetic contractions. Of which, only the
magnetic contraction possesses non-trivial, non-linear contributions. This is
because the electric contraction of ModMax differs from that of Maxwell only in
an overall factor. Furthermore, we found an invertible map' between the magnetic
Carrollian limit of ModMax and its counterpart in Maxwell theory that comes
from interchanging the canonical momenta associated with the vector potential
between each theory. Nevertheless, it is expected that the inclusion of matter in

the formulation generates a significant difference with Carrollian Maxwell theory.

The inclusion of matter constitutes a natural continuation of this work and
requires considering what happens to the electric charge continuity equation.
Besides, there is a chance that different matter couplings yield to results with
non-trivial dynamics, as has been seen in previous works with interacting particles

in Carrollian geometries.

The symmetry analysis of the Carrollian limits of Maxwell theory, carried out
via Lie point symmetry method, allowed us to both verify something already
known: both limits are covariant under the action of the conformal Carrollian
group of level 2, as well as some new results that complement this: the explicit
construction of both the action of the special conformal Carrollian transformations
of level 2 over the fields and that of the infinite dimensional sector of this group,

corresponding to super-translations of Carrollian time; the separation of space-

1See (9.1.14)
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time dilations into space and time dilations; the internal symmetry bequeathed
by the duality symmetry generator. Each generator found via this method were
exponentiated in order to construct their corresponding finite transformations.
Said transformations, among the isomorphism between the magnetic Carrollian
limit of ModMax and the magnetic Carrollian limit of Maxwell, were used to
show that the symmetries found for Maxwell’s case are also symmetries in their

ModMax counterpart.

Since the method employed for finding the symmetries relies in polynomials whose
order rapidly increases the computational demands for the necessary computations
and that for every order used in this work new generators of super-translations were
found?, there exists the possibility that there exists new generators at higher order
of the polynomials. Determining whether they exist is also a natural continuation

of this work.

Hamiltonian formulations were found for both Carrollian limits by two slightly
different approaches. The first approach is based in constructing the Hamiltonian
by using the Carrollian limits of the canonical momenta associated to the vector
potential. The second method is based in taking the Carrollian limits of the energy
function of the theory for each case. These approaches came as a consequence
of the difficulty of solving the constitutive equation (9.2.6) and, notoriously
enough, yield the correct equations of motion. In this line, the construction of
of a symplectic formulation of both the electric and magnetic limit would be an

interesting continuation.

Finally, it is worth noting that we have also constructed the Galilean limits of
ModMax, obtained their symmetries and analyzed them. This is not included in
this work mainly for three reasons: this work is already quite long for a masters
thesis, we did not find Galilean special conformal transformations and we want
to know why, and we did not find non-trivial, non-linear contributions in these
limits. Nevertheless, it must be said that these theories also possess a separation of
space-time dilations into space dilations and time dilations, each having non-trivial

actions over the fields.

2Implying the process never truncated.
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Appendix A

Lie Point Symmetries

The work presented in ( ) is summarized in the following.

A1l Lie point symmetries in one dimension

The Lie point symmetries method presented in Chapter eight of ( )

deals with finding the symmetries of differential equations written in the form

S [z,y,Ys,...] =0. (A1.1)

Where x denotes an independent variable, y denotes the dependent variable and

Y, corresponds to the derivative of y with respect to x.

When dealing with the symmetry groups of differential equations it is needed
to determine how they act on both dependent and independent variables. The

following shows how to obtain the appropriate transformations for derivatives.

A1l1l.1 Finite construction

We consider the action of a group on the independent variable x and the dependent

variable y characterized by a parameter s
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such that when s = 0 they remain unchanged

x = Flx,y,0] (A1.4)
y = Glz,y,0]. (A1.5)

From this, we wish to construct how the derivative y, transform under the group
in a manner consistent with (A1.2) and (A1.3). For this, use of the following

conditions is used

dy — y.dx =0 (A1.6)

dy — yzdz = 0, (A1.7)

- : . dy _dy . _
which is equivalent to asking v, = T and gz = yrE We proceed by differentiating
x z

equations (A1.2) and (A1.3) to construct said derivative

oG oG

J=— — Al.
dy axda:+ aydy (A1.8)
oF OF
dx = —d —dy. Al.
T=5 x+ a9y Y (A1.9)

This is replaced in (A1.7), where we solve for ¢;z.
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oG oG oG N oG dy

. —dr+ —d — 4+ —
__dy _ Ox $+8y y_@x Oy dx (A1.10)
ox oy or Jy dx
Ge + 4Gy
Al.11
ety Fy ( )

Here, both numerator and denominator were divided by dx to give them the form
of total derivatives with respect to x. To simplify notation, the operator D is

defined as this total derivative

D) i= 70) = 50+ g ) (AL12)

This way, equation (Al.11) can be simply expressed as

Jz = Gy, v, Yo, 8] := DG (DF) 7' (A1.13)

This describes the transformation ¥, takes as induced from the transformations
for x and y. In the same fashion, the transformation for y,, is constructed. We

start from the contact conditions

which, as stated previously, stem from

_dy. N dyz

= ir = ——. Al.16
dx 4 dx ( )

Yz

The differential of the numerator in this expression can be obtained by
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differentiating equation (A1.13)

oG oG 0G

_ {1} {1}

dijz = d d dys A1.17

y 5 4 9 Y+ . W ( )
oF OF

di = ——dx + —dy. A1.18

T=— x4+ o Yy ( )

This is replaced in (A1.16) and we carry on exactly as before

oG oG oG
. 0 gy 4 — dy + ﬁdym
o OF 104 OF, |
ox dy 4
Gye + ¥G iy + Y2 Giayy
= . Al.2
Fe+y. Fy (AL20)

Notice this time D has an extra term. This is because G/{1y has an extra dependence

on y, and it has to be accounted in the total derivative expression

D) = 500+ () ey (). (AL21)

We arrive, then, at the induced transformation of the second derivative

Uiz = G2y [, Y, Yo, Y, 8] := DGy (DF) . (A1.22)

It has to be noted that this process can be carried over as long as we wish but for

the purpose of this work, this is a good place to stop.

A1.2 Infinitesimal construction

While the formulas obtained in the previous section work well to determine whether
a differential equation is invariant under the action of a certain group, it gives

us no way of obtaining said group from scratch. The purpose of the infinitesimal
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construction is precisely that. We start by writing the transformations up to first

order in the group parameter s

T

x+ s&x,y] (A1.23)
Y+ sz, yl, (A1.24)

y

where ¢ and 7 are the first order coefficient of the Taylor expansion of F' and G

with respect to s, respectively

OF oG

s=0 s=0

The idea is to make use of this expansion to construct a system of partial differential
equations in order to solve for the symmetries. The first step in achieving so is
building the infinitesimal versions of the transformations for the derivatives. We
start with the transformation for the first derivative by replacing (A1.23) and
(A1.24) into (A1.13)

DG

Ui = 7 Al.2
Ui = pF ( 6)
Yz + SDn
LA} Al.2
14 sD¢ ( 7)
~ Y + 5 (Dn — y.DE) (A1.28)
=Yot+s (7796 + (77y — &) Yo — gyy?c) . (A1.29)

Therefore, the infinitesimal transformation for the first derivative is given by

Uz = Yo + s N13[2, Y, Yo (A1.30)

The construction of the infinitesimal transformation of the second derivative
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follows suit in the same fashion'

_ DGy

Yz = (A1.31)
e + SD
=yl+—wz_{”’ (A1.32)
Rz + 5 (D1g1y — YaaDE) (A1.33)
=Yoo + 5 (Now + 2Ny — Eaa) Yo + (yy — 260y) Y2 — Euatl
+ (ny = 22) Yox — 30yYuYar) (A1.34)
=Yoo + SN2} T, Y, Y, Yua]- (A1.35)

A1.3 Example of use: the symmetry group of y,, =0

The how-to procedure of this method is better shown with a practical example.

Let us consider the case of the equation

Invariance of an equation ®[x, ¥y, y., y..] = 0 under the group’s action means

For simplicity, we define z = (z, ¥y, ys, Yzz) s0 that 2 = (2,7, Uz, Uzz). Expanding

an equation ®[Z] in powers of s

0P 52 0P
ozl =9 — — A1.38
H=ld s g v (AL38)
0z 0P s? 0 0 (07 0P
= - 4+ — - | — — .. (Al
=]+ 0s |,_o 02" + 2 0Os|,_, 02 ( 0s |,_, 8zﬂ> + (A1.39)

Tt is noteworthy to mention it’s possible to proceed ad infinitum. For our purposes, however,
this is as good a place to stop as any.
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This becomes (A1.37) if and only if

07 od
95 |, 07

= 0. (A1.40)

Defining the twice-extended vector

X —534_ 24_ 14_ 8
2E 50 T gy T gy, T gy,

(A1.41)

We can rewrite this condition as X, ® = 0. If the differential equation one is
dealing with includes dependencies up to p-th derivatives then one must make

use of the p-th extended vector Xy, to implement the invariance condition

0 0 0 0

Returning to our case of study, equation (A1.36) is invariant if

LV =X ¥ =0. (A1.43)

This implies 79y = 0, which is to be expected as the second derivative should not

transform in this case
0 =ngy (Al.44)
= Nyg + (277967; — &aa) Yo + (nyy - 25953/) yi - gmyi (A1.45)

The functions y, their powers and derivatives are linearly independent. So for this

condition to held true it follows all coefficients must be simultaneously zero
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Mgy — 260y =0 (A1.48)
&y = 0. (A1.49)

Solving this trough regular methods is quite simple. However, the systems of
equations this method produces are, more often than not, over-determined and

polynomial expressions are used for solving them. We have

E=ay+ asr +azy + a4x2 + asxy + a6y2 + a7x3 + angy + agxy2 + a10y3
(A1.50)

N = by + box + bgy + byx® + bswy + bey® + by’ + bgay + boxy® + broy®. (A1.51)

Replacing this back into the equations we get an eight-parameter solution for

them

€ = a1 + asx + asy + asx’® + asxy (A1.52)
N = by + by + bsy + asxy + asy>. (A1.53)

We use them to construct both the infinitesimal version of the transformations
that leave invariant the equation y,, = 0 by taking all parameters to be zero

except one
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a:T=x+Ss g=1y (A1.54)
as : T =1+ sx g=1y (A1.55)
as: T =1z + sy g=1y (A1.56)
ay: T = x + s’ J=1vy+sxy (A1.57)
as : T =x + svy g =1y + sy (A1.58)
by:T==x g=y+s (A1.59)
by: T =2 g=1y+sx (A1.60)
bs:T==x Y=y -+ sy. (A1.61)

And the vector fields” that form the algebra of symmetries of the system are given
by

0 0
X =(— +n— A1.62
§o, T 5y (A1.62)
0
= (a1 + a2z + azy + asz” + aszy) Fri (b1 + box + bsy + aswy + asy?) By
(A1.63)

this is an eight-dimensional real vector space A, with basis

2In their non-extended version.
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A = a%- (A1.64)
Ay = x(% (A1.65)
A = y% (A1.66)
Ay=z % + xy(% (A1.67)
As = xyag +vy aay (A1.68)
B, = a% (A1.69)
By = x(% (A1.70)
Bs = y(%. (AL1.71)

Their commutator table is built by simply evaluating the commutators while

0
understanding B and — as vectors in the tangent space of M = (x,y).
x

dy
Each vector in this algebra corresponds to the tangent to a curve v* : R — M

parameterized by s and we can reconstruct it by solving the differential equation

X (s) = Xyx(s).- (A1.72)

Proceeding with the computation of the symmetries of y,, = 0 we calculate the

solutions of the system of ordinary differential equations for A;

A (s) = Ay yai () (A1.73)
o ., .0 0

x<$)8_x + y(s)a—y =5 (A1.74)

Initial conditions z(0) = 2 and y(0) = yo are imposed into the solution of this

equation. Let 7X R — M be the unique solution to equation (A1.72) with
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initial conditions ~;* (0) = p. Then we get’

Vo oy (8) = (0 + 5,90 (A1.75)

This solution is used to construct the transformation associated to A; by the flow

A R x M — M (A1.76)
(s,2,y) — ™Y (s,2,9) ==, (5)- (AL.77)

For the symmetry generated by Ay a system of ODEs is constructed for a curve

742 by imposing it have tangent vector A, A2

;YAQ(S> — A27A2(s) <A178>
N N 0
x(s)% + y(s)a—y = x(s)a (A1.79)

The unique solution to this system of ODEs with initial conditions y42(0) = (z¢, yo)

18

Ve oo (8) = (€0, 90) - (A1.80)

This solution is used to construct the finite transformation for A,

A2 Rx M — M (A1.81)
(s,2,y) — b2 (s,2,y) == 72, (5)- (A1.82)

The system of ODEs to solve for the vector field A3 is

3If notation starts to feel a bit crowded I urge you, dear reader, to bear with me.


https://en.wikipedia.org/wiki/Bear
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A4 (s) = Agyas () (A1.83)
L, 0 .0 0
x(s)% + y(s)a—y = y(s)a—x (A1.84)

This has a unique solution with initial conditions v2(0) = (¢, o) given by

Vi o (8) = (20 + Y05, %0) (A1.85)

The flow of this system of equations yields the transformation associated with A

A R x M — M (A1.86)
(s,2,y) — B (s,2,y) == 72, (5). (A1.87)

The system of ODEs to solve for finding the symmetry transformation generated

by Ay is

M (s) = Ay (A1.88)
x(s)% + y(s)% = I(S)Q% + m(s)y(s)(%. (A1.89)

This has unique solution with initial conditions v44(0) = (¢, y0) given by

X
ygjc;yo)(s):( 0 Yo ) (A1.90)

1—sx9’ 1—sxo

Using this solution the flow that represents the action of this symmetry is

constructed as
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4 Rx M — M (A1.91)
(s,2,y) — W™ (s,2,y) == 0, (). (A1.92)

The system of ordinary differential equations® to solve for the vector field As is

A5 (s) = A yas(s) (A1.93)
)55+ )50 = 2695 + (55 (AL.94)

The unique solution for this system with initial conditions v%(0) = (¢, %) is

xz
7{9‘;%)(3):( L— ) (A1.95)

This is used to construct the flow

Y Rx M — M (A1.96)
(s,2,y) — b (s,2,9) == 72, (). (A1.97)

The system of ODEs to solve in the B case are

P1(s) = By e (A1.98)
%) o 0
; (s)— = —. Al
x(s)&g + y(s)ay 2y (A1.99)

The unique solution to this with initial conditions v5*(0) = (¢, y0) is the curve

am trying (and failing) to write this in slightly different ways. 1 am sure a 1S point you ge
41 tryi d failing) t ite this in slightly different I t this point t
the gist of it anyway.
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T oy (8) = (0,90 +5) - (A1.100)

Using this to construct the symmetry transformation we were looking for via flow

we get

RPY Rx M — M (A1.101)
(5,2,y) — hP (s,2,y) == fy(]‘il,y)(s). (A1.102)

The system of ordinary differential equations that serve as imposition of 7?2

having tangent vector B, .5, is

YP2(s) = By ey (A1.103)
.0 0 0
x(s)% + y(s)a—y = x(s)a—y (A1.104)

The unique solution to this system with initial conditions v%2(0) = (g, o) is

V2 oy (8) = (0, 40 + 570) - (A1.105)

This is used to build the flow that represents the transformation we were looking

for

P2 Rx M — M (A1.106)

(5,0,) — WP (s,0,9) = 42, (s). (AL.107)

The system of ODEs to solve in this last case is
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Y75(s) = By ma s (A1.108)
.0 0 0
x<8)8_m + y(8>8_y = y(s)$. (A1.109)

The unique solution to this equations with initial conditions v73(0) = (z9, o) is

Vgi,yo)(s) = (2o, €"yo) - (A1.110)

The symmetry transformation for Bj is constructed thusly
P R x M — M (A1.111)
(s,2,y) — hP (s,2,y) = 75531/)(3)' (A1.112)

Each flow corresponds to a one-parameter subgroup of the symmetries of the
equation y,, = 0 and from them the total group can be reconstructed. We start

by defining the endomorphisms hX on M for each vector field X € S

XM — M (A1.113)
p — hX(p) :== h¥(s,p). (A1.114)

Where s € R is the parameter of the transformation. The group of symmetries of

the equation y,, is the set of transformations

T:={hf|X eSAsecR}, (A1.115)

with product given by composition of maps.
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The effect caused by the set of transformations hX € T for X € S and s € R
can be nicely shown in graphical form in two dimensions by plotting the integral
curves of each vector field X. Graphs representing the integral curves of each

vector X € S are shown below:

3l

— ]

Pin — Py — —_——— ] L e

T = —_— ——— T b

SOV 1277/ 1T SSANNN 22 T I e
N i/ NN\ RIRIETINIRR AR
NN AN R
N\ ZaSNN\\lZ i i
SN ==
e B S I\ e i
NN Sl e 7 NS S—— P gt
N 7 NS IR T IEREE!
= INSSIE I\ SSSRRIRR R
NS 1 27NN R
NN R AN R R AR R

| 1 I
AR R AR R AR AL

3 2 1 0 1 3 -3 -2 1 0 1 2 3

(g) Integral curves of By (h) Integral curves of Bs

These were constructed with the software Mathematica. Even if this may suggest
otherwise, all vector fields are complete. Colour in these graphs gives an idea of
“length” of tangent vectors at each point, with warmer colour indicating increasing

length and colder ones indicating shorter.
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A2 Lie point symmetries in multiple dimensions

Extending this method for multiple dimensions to be able to deal with both partial
derivatives and multiple dependent variables is a necessary extension for this work
and quite a natural follow-up. PDEs are treated as differential functions in the
tangent to a space (x,vy), where  are independent variables and y are dependent
ones. Transformations in this formalism are guaranteed to form a group in the

same fashion as the previous case.

We start by considering the finite transformations F’[z,y, s| for independent
variables & and G*[x, y, s] for dependent variables y, with j € {1,....,.n} C N and
i € {1,...,m} C N being labels for ’s and y’s coordinates and s € R being a real

valued parameter characterizing the transformations

¥ = Fllx,y, s (A2.1)

with 27 = F/[z,y,0] and 3' = G*[x, y,0]. The approach to take in order to arrive
at a differential system of equations whose solutions are the coefficients of vector
fields generating the symmetries of a given system of PDEs is simply an extension
of simpler, previous case. Starting with the contact condition for first order partial

derivatives

dj’ — j..dz* = 0. (A2.3)

We expand the differentials d#’ and dg' using (A2.1) and (A2.2), respectively
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dz® = dF’ dj' = dG" (A2.4)

OF7 OF oG! oG!

_ a B - a g A2.
5 ~dz® + 8yﬁdy 5 —dz® + 8yr3dy (A2.5)

0 %) : %) 0 .

= _— '8_ J a — - B_ 3 (64
(awa—kyaayﬁ)}?da: (ag;a+ya yﬁ)de (A2.6)

= (DgF®) da” = (DsG") da”. (A2.7)

Replacing equations (A2.7) into (A2.3) we arrive at

(DsG' — G, DgF*) da” = 0. (A2.8)

Differentials dx® are linearly independent, therefore each coefficient has to be zero
on their own. On the other hand, in order for DgF'“ to have an inverse it needs
to satisfy det (DgF®) # 0. Imposing this it follows that

DsG' — §.,DgF* =0 (A2.9)
(DsG' = G DsF*) (D, FP) " =0 (A2.10)
J', — DG (D, FP) " =0. (A2.11)

With this we can define the transformations of first derivatives y;- in the once-

extended group as

~ i i —1
J; = Gy [, 9,1, 5] := DG (D, FP) (A2.12)

where y; stands as a shorthand for first derivatives of dependent variables y.

Next step needed to arrive at a useful point for us is constructing the finite
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transformations for second derivatives’.

We start with the contact condition for them

dg; — i, dz® = 0. (A2.13)

Replacing (A2.12) into (A2.13) we get

dg; = dG{j, (A2.14)
oG oG . oG .
_ it 4} 5 8 U 5 8 A2.1
S dr® + 3y dy” + o0 dy,, (A2.15)
0 0 0 ;
— B B i a
= (81‘0‘ + Yo Oyﬁ + yua ay£> {]}dx <A216)
= DoGYjyda®. (A2.17)

With this it is possible to define finite transformations for second derivatives by

following the same steps as before as

gjiijé = Gijle} [11, Y,Y1,Y2, 5] = DaG?{jl} (D12Fa)_1 : <A218>

Now we’ve got transformation rules for second derivatives we need to construct
the differential version of these transformation rules so it is possible to apply them
in the problems we are interested in. Consider the infinitesimal version of the

transformation for the independent variables  and the dependent variables y

i =) + s¢ [z, y] (A2.19)
J =y +sn'[z, Y], (A2.20)

5This is because the present work has examples which feature second derivatives. If that were
not the case, stopping at first derivatives would have been fine as both Maxwell and ModMax
theory are systems of first order partial differential equations.
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where j € {1,...,n} C Nand i € {1,...,m} C N and functions & and 1" are
first order terms of Taylor expansions around group parameter s of F/ and G,

respectively

or oy 0
0s N

gle,y] = (A2.21)

s=0

Replacing (A2.19) and (A2.20) into (A2.12) we get

7y = Dy (v + s1'[w,y)" (D; (2° + s¢”[,)))

( )

A , 5 5 ~1
= (ys + sDgn' [, y)) (5]- +5D;¢ [w,y]> (A2.23)
~ (s + sDpr' [, y]) (6? — sD,;&x, y]) ( )
=y + s (D', y] — ys D, [, y]) + O (57) (A2.25)
where the matrix (5ﬂj + SDJ,SB [z, yD*l was approximated as® 6% — Sngg z,y]

and the last line is the result is truncated at first order in group parameter s.

With this we define the infinitesimal transformation of first derivatives

U5 =y, + sy 2y, 9], (A2.26)

with y; being a shorthand for first derivatives of dependent variables y and

functions nj;, defined as

Ny [Ty, v == D', y) — v ;€0 [, ). (A2.27)

Just as in the ODE case, dependence on derivatives of the same order is linear.

For second order partial derivatives the process is repeated, starting by replacing

SWhich is the usual way of approximating matrices’ inverses around a small parameter at the
identity.
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(A2.19) and (A2.26) into (A2.18)

752 = Do (U, + 50y [®, 9, w1]) (Dy, (2% + %[z, y))) ™ (A2.28)
= (4,0 + Dty [y, 31]) (6% + sD€ @, y]) (A2.29)
~ (Yo + sDanijl} [z, y,y1]) (65 — sD;, &% [, y]) (A2.30)
= Y55 + 5 (D [@9,y1) = 4,u D€ [, 9]) + O (s?), (A2.31)

where the same approximations were taken as the previous case were taken. Care
must be put to consider the appropriate version of derivatives D, to use in each
case to arrive at the correct expressions when expanding these transformation
rules’. Last expression allows us to define the infinitesimal transformation of

second derivatives as

g‘;le - y;1]2 + 8771{]1]2} [w7 y7 y17 yZ] ) (A2'32)

where y, stands as a shorthand for second derivatives of dependent variables y

and functions ni jrja} A€ defined as

/’72]1]2} [a‘:v Y, Y1, y2] = D_]Qn?{‘]l} [wa Y, yl] - y;'laDjQSa [CB, y] : (A233)

This concludes the mathematical background of the method used here to obtain
symmetries®. Actual computations were generally done in Mathematica software
as solving systems of around 400 partial differential equations by hand is a really

good way of making dumb mistakes.

"Just as when dealing with one variable, derivatives Dg can be thought as representing total
derivatives with respect to dependent variable 2.

8If you, dear reader, were looking for an example of the multi-variable version in action I'm
happy to disappoint.
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Appendix B

Symmetries of the scalar wave

equation

This appendix serves as an expansion of chapter 5, where the symmetries of the
equations of motion for the relativistic scalar field were not included as to not
disturb the narrative. This brief chapter contains the symmetries of the wave

equation’

V23 — 252 =0 (B.0.1)

which consists of space-time translations, space rotations, Lorentzian boosts,
space-time dilations and special conformal transformations. The symmetries of
the wave equation consist, then, of the 4-dimensional relativistic conformal group
that was introduced as a natural extension of the Poincaré group ISO (3, 1). These

symmetries were obtained via the same procedure used in the rest of this work.

In the terminology used in the previous appendix, this equation can be written as
(I)[t7 z,Y,z, ¢tt7 (b:v:cv ¢yy7 (bzz] = ¢:1::1: + ¢yy + ¢zz - c_2¢tt =0.
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B.1 Generators

Consider the total space F characterized by (¢, x, ¢), with projection map

T F —M (B.1.1)
(t,x,0) — 7 (t,x,0) := (t,%) . (B.1.2)

Symmetry generators of equation (B.0.1) are vector fields in T'F, with

2 %% (B.1.3)
Pa a% (B.1.4)
Ja = GAchBa;ic (B.1.5)
K= %% + cta—iA (B.1.6)
Sy = —2021593A% — (PP +2* +y* + 2°) % + 2c2¢a% (B.1.7)
Su =21, (xBaxiB - t%) - x“x”nwa% — 2:cAa% (B.1.8)

D= a:A% + t% (B.1.9)
W = %%. (B.1.10)

All symmetry generators except special conformal transformations leave the scalar

field unchanged, which is the usual way one thinks of transformations of a scalar
field.

B.2 Finite transformations

The finite symmetry transformations were obtained by solving systems of ODEs

given by
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YY) = Xyx ), (B.2.1)

where 7 : R — M is a curve in the base manifold M and X € T'F is one of the
symmetry generators. Solutions of these system of ODEs with initial conditions
v*(0) = p for a given p € M are denoted by %;Y . Each solution 7;}/ is unique and
is used to construct a 1-parameter subgroup of the total group by building its

associated flow

Y :RxF — M (B.2.2)
(Ap) — bY (A, p) =9 (), (B.2.3)
with transformations
(Nt x,0) == (t+ Ae,x, 0) (B.2.4)
hPA (N t,%,¢) == (t,x +1a), @) (B.2.5)
A (N t,x,0) := (t, Ra (M) X, ¢) (B.2.6)
hP )\,t,x ) = (e, e'x, 9) (B.2.7)
“(\x, ) = (w (:L' —u,(N) (x,:c)n) ,Q“()\)cﬁ) (B.2.8)
WY (ANt x,0) = (t,x,e'9), (B.2.9)

rotation matrices given by

1 0 0 cosA 0 sinA
Ri(A) =0 cosA —sin\ Ry(N) = 0 1 0 |, (B.2.10)
0 sinA cosA\ —sinA 0 cosA

and
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cosA —sinA 0
R3(\) = | sinA  cosA 0], (B.2.11)
0 0 1

indicator functions my(A\) = (A,0,0,0), u1(A) = (0,A,0,0), uz(X) = (0,0, A,0),

u3(A) = (0,0,0, \) and special conformal transformation related functions given

wu(A) == Qa(A) == Az —ua(1), A — s (1))

(B.2.12)
and Qp(A) := (X +1)% — X222 — A2 — 2A222,

B.2.1 Restriction to the space-time part

The restriction to the space-time component of these symmetries corresponds
to the pushforward of the vector fields in the total space with respect to the

projection map 7, with

H— i — %% (B.2.13)
Py =mPs= % (B.2.14)
Ja=m.Ta = GABc.Z‘Ba;iC (B.2.15)
Ky=7mKs= ?% + ct({% (B.2.16)
D=mD= g;“% - t% (B.2.17)
Sy =m.Sa=2x4 (xBaxiB + t%) - :E“IEVUW%. (B.2.18)

The group of symmetries is formed by flows h{ with product being the map
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composition and X = 7,.X, which of course is also just hy = 7o hy.
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